Hartogs Extension Theorems on Stein Spaces

被引:0
作者
Nils Øvrelid
Sophia Vassiliadou
机构
[1] University of Oslo,Dept. of Mathematics
[2] Georgetown University,Dept. of Mathematics
来源
Journal of Geometric Analysis | 2010年 / 20卷
关键词
Cauchy-Riemann equation; Singularity; Cohomology groups; 32B10; 32J25; 32W05; 14C30;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss various known generalizations of the classical Hartogs extension theorem on Stein spaces with arbitrary singularities and present an analytic proof based on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\partial}$\end{document}-methods.
引用
收藏
页码:817 / 836
页数:19
相关论文
共 20 条
  • [1] Andreotti A.(1962)Théorèmes de finitude pour la cohomologie des espaces complexes Bull. Soc. Math. Fr. 90 193-259
  • [2] Grauert H.(1972)E.E. Levi convexity and the Hans Levy problem. Part I: reduction to vanishing theorems Ann. Sc. Norm. Super. Pisa 26 325-363
  • [3] Andreotti A.(1965)Carlemann estimates for the Laplace-Beltrami equation on complex manifolds Publ. Math., IHÉS 25 81-130
  • [4] Hill D.(2009)On Hartogs’ extension theorem on ( J. Reine Angew. Math. 637 41-47
  • [5] Andreotti A.(2005)−1)-complete complex spaces Proc. Am. Math. Soc. 133 2377-2386
  • [6] Vesentini E.(1969)Semiglobal results for Am. J. Math. 91 853-873
  • [7] Coltoiu M.(2005) on a complex space with arbitrary singularities J. Math. Anal. Appl. 305 722-742
  • [8] Ruppenthal J.(1966)The theory of hyperfunctions on totally real subsets of complex manifolds with applications to extension problems Proc. AMS 17 1244-1249
  • [9] Fornæss J.E.(1960–1961)Fourier-Laplace transforms and related questions on certain analytic varieties in ℂ Sem. Bourbaki 13 214-01-214-13
  • [10] Øvrelid N.(2009)Some remarks about a theorem of Hartogs J. Reine. Angew. Math. 637 23-39