Connes–Landi Deformation of Spectral Triples

被引:0
作者
Makoto Yamashita
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
来源
Letters in Mathematical Physics | 2010年 / 94卷
关键词
58B34; 46L87; noncommutative geometry; spectral triple; -theory; isospectral deformation;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a way to deform a spectral triple with a 2-torus action parametrized by a real deformation parameter, motivated by the Connes–Landi deformation of manifolds. Such deformations are shown to have naturally isomorphic K-theoretic invariants independent of the deformation parameter.
引用
收藏
页码:263 / 291
页数:28
相关论文
共 23 条
[1]  
Bédos E.(2009)On twisted Fourier analysis and convergence of Fourier series on discrete groups J. Fourier Anal. Appl. 15 336-365
[2]  
Conti R.(1980)* algèbres et géométrie différentielle C. R. Acad. Sci. Paris Sér. A-B 290 A599-A604
[3]  
Connes A.(1981)An analogue of the Thom isomorphism for crossed products of a Adv. Math. 39 31-55
[4]  
Connes A.(1985)*-algebra by an action of Inst. Hautes Études Sci. Publ. Math. 62 257-360
[5]  
Connes A.(2001)Noncommutative differential geometry Comm. Math. Phys. 221 141-159
[6]  
Connes A.(1995)Noncommutative manifolds, the instanton algebra and isospectral deformations Geom. Funct. Anal. 5 174-243
[7]  
Landi G.(1988)The local index formula in noncommutative geometry Acta Math. 160 285-305
[8]  
Connes A.(2005)Cyclic cohomology for one-parameter smooth crossed products Comm. Math. Phys. 256 213-238
[9]  
Moscovici H.(2005)θ-deformations as compact quantum metric spaces Comm. Math. Phys. 254 323-341
[10]  
Elliott G.A.(1988)A local index formula for the quantum sphere J. Funct. Anal. 80 235-283