Lead sulphide nanocrystal photodetector technologies

被引:637
作者
Saran, Rinku [1 ]
Curry, Richard J. [1 ]
机构
[1] Univ Surrey, Dept Elect & Elect Engn, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
COLLOIDAL QUANTUM DOTS; PBS NANOCRYSTALS; CHARGE-TRANSPORT; SEMICONDUCTOR NANOCRYSTALS; INFRARED PHOTODETECTORS; ELECTRONIC-PROPERTIES; OPTICAL-PROPERTIES; THIN-FILMS; PHOTOCONDUCTIVITY; GRAPHENE;
D O I
10.1038/NPHOTON.2015.280
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light detection is the underlying principle of many optoelectronic systems. For decades, semiconductors including silicon carbide, silicon, indium gallium arsenide and germanium have dominated the photodetector industry. They can show excellent photosensitivity but are limited by one or more aspects, such as high production cost, high-temperature processing, flexible substrate incompatibility, limited spectral range or a requirement for cryogenic cooling for efficient operation. Recently lead sulphide (PbS) nanocrystals have emerged as one of the most promising new materials for photodetector fabrication. They offer several advantages including low-cost manufacturing, solution processability, size-tunable spectral sensitivity and flexible substrate compatibility, and they have achieved figures of merit outperforming conventional photodetectors. We review the underlying concepts, breakthroughs and remaining challenges in photodetector technologies based on PbS nanocrystals.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 102 条
[1]   Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer [J].
Adinolfi, Valerio ;
Kramer, Illan J. ;
Labelle, Andre J. ;
Sutherland, Brandon R. ;
Hoogland, S. ;
Sargent, Edward H. .
ACS NANO, 2015, 9 (01) :356-362
[2]   Electrical effects of metal nanoparticles embedded in ultra-thin colloidal quantum dot films [J].
Beck, F. J. ;
de Arquer, F. P. Garcia ;
Bernechea, M. ;
Konstantatos, G. .
APPLIED PHYSICS LETTERS, 2012, 101 (04)
[3]   Semiconductor nanocrystals photosensitize C60 crystals [J].
Biebersdorf, Andreas ;
Dietmuller, Roland ;
Susha, Andrei S. ;
Rogach, Andrey L. ;
Poznyak, Sergey K. ;
Talapin, Dmitri V. ;
Weller, Horst ;
Klar, Thomas A. ;
Feldmann, Jochen .
NANO LETTERS, 2006, 6 (07) :1559-1563
[4]   Low Driving Voltage and High Mobility Ambipolar Field-Effect Transistors with PbS Colloidal Nanocrystals [J].
Bisri, Satria Zulkarnaen ;
Piliego, Claudia ;
Yarema, Maksym ;
Heiss, Wolfgang ;
Loi, Maria Antonietta .
ADVANCED MATERIALS, 2013, 25 (31) :4309-4314
[5]   Electrical characterization of nanocrystal solids [J].
Bozyigit, D. ;
Wood, V. .
JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (17) :3172-3184
[6]   A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells [J].
Bozyigit, Deniz ;
Lin, Weyde M. M. ;
Yazdani, Nuri ;
Yarema, Olesya ;
Wood, Vanessa .
NATURE COMMUNICATIONS, 2015, 6
[7]   Quantification of Deep Traps in Nanocrystal Solids, Their Electronic Properties, and Their Influence on Device Behavior [J].
Bozyigit, Deniz ;
Volk, Sebastian ;
Yarema, Olesya ;
Wood, Vanessa .
NANO LETTERS, 2013, 13 (11) :5284-5288
[8]   Deep Level Transient Spectroscopy (DLTS) on Colloidal-Synthesized Nanocrystal Solids [J].
Bozyigit, Deniz ;
Jakob, Michael ;
Yarema, Olesya ;
Wood, Vanessa .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) :2915-2919
[9]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[10]  
Bube R.H., 1960, Photoconductivity of Solids