Grain Size Effect of Bulk Nanocrystalline Pr0.5Nd0.5(Fe0.75Co0.1Cu0.01 Nb0.04Si0.05B0.05)1.93 Alloy Synthesized Under Ultrahigh Pressure

被引:0
作者
Cheng-Chao Hu
Zhao Zhang
Jing-Jing Jiao
Li-Chao Cai
Peng Fu
Hui Chen
Jun-Jie Ni
Wei Li
Yang-Guang Shi
机构
[1] Liaocheng University,School of Materials Science and Engineering
[2] Junrui Super-hard Material CO.,Department of Applied Physics
[3] LTD,undefined
[4] Nanjing University of Aeronautics and Astronautics,undefined
来源
Journal of Superconductivity and Novel Magnetism | 2021年 / 34卷
关键词
Cubic Laves phase; Magnetostriction; Bulk nanocrystalline;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the light-rare-earth anisotropic compensation system, bulk nanocrystalline Pr0.5Nd0.5(Fe0.75Co0.1Cu0.01Nb0.04 Si0.05B0.05)1.93 magnetostrictive alloys were synthesized by annealing its melt-spinning ribbons under different ultrahigh pressures. It was demonstrated that high-pressure annealing could effectively synthesize the wanted magnetostrictive phase and control the grain growth of Pr0.5Nd0.5(Fe0.75Co0.1Cu0.01Nb0.04Si0.05B0.05)1.93 bulk nanocrystals. The average grain size decreased with annealing pressure increasing from 3 to 8 GPa, accompanied by a decrease in coercivity. The volume fraction of the cubic Laves phase, as well as grain size, synergistically affected the magnetoelastic response of the investigated bulk nanocrystalline magnetostrictive alloys. This work gives us an insight into the microstructure controlling of the bulk nanocrystalline magnetostrictive materials and provides a way to select suitable bulk nanocrystals to meet the different magnetostrictive applications.
引用
收藏
页码:261 / 267
页数:6
相关论文
共 136 条
[1]  
Olabi AG(2008)Design and application of magnetostrictive materials Mater. Des. 29 469-283
[2]  
Grunwald A(1978)Magnetization and magnetic anisotropy of TbFe2, DyFe2, Tb0.27Dy0.73Fe2and TmFe2 IEEE Trans. Magn. 14 542-185
[3]  
Clark AE(1991)Giant magnetostriction materials J. Magn. Magn. Mater. 100 173-274
[4]  
Abbundi R(2013)Morphotropic phase boundaries in ferromagnets: Tb1−xDyxFe2 Alloys Phys. Rev. Lett. 111 017203-389
[5]  
Gillmor WR(2002)Structure and magnetostriction of Sm1−xPrxFe2 and Sm0.9Pr0.1(Fe1−yBy)2 alloys J. Magn. Magn. Mater. 246 270-69
[6]  
Koon NC(2004)Magnetostriction and anisotropy compensation in TbxDy1−xPr0.3(Fe0.9B0.1)1.93 alloys Appl. Phys. Lett. 84 562-2117
[7]  
Williams CM(2007)Giant magnetostriction in Sm1−xNdxFe1.93 compounds Appl. Phys. Lett. 90 252513-554
[8]  
Das BN(2008)Composition anisotropy compensation and magnetostriction in Pr(Fe1−xCox)1.9 (0 ≤x ≤ 0.5) cubic Laves alloys Appl. Phys. Lett. 92 212507-88
[9]  
Bergstrom R(2012)Structural, magnetic and magnetostrictive behavior in Nd(Fe1−xCox)1.9 compounds J. Appl. Phys. 112 063902-undefined
[10]  
Wuttig M(2006)High-pressure synthesis of giant magnetostrictive PrxTb1−xFe1.9 alloys Appl. Phys. Lett. 89 202503-undefined