On the existence and absence of global solutions of the first Darboux problem for nonlinear wave equations

被引:0
作者
G. K. Berikelashvili
O. M. Dzhokhadze
B. G. Midodashvili
S. S. Kharibegashvili
机构
[1] Mathematical Institute,
[2] Georgia Technical University,undefined
来源
Differential Equations | 2008年 / 44卷
关键词
Classical Solution; Global Solution; Nonlinear Wave Equation; Global Solvability; Unique Classical Solution;
D O I
暂无
中图分类号
学科分类号
摘要
For the one-dimensional wave equation with a power-law nonlinearity, we consider the first Darboux problem, for which we study issues related to the existence and absence of local and global solutions.
引用
收藏
页码:374 / 389
页数:15
相关论文
共 50 条
[31]   Global existence for nonlinear wave equation [J].
Georgiev, Svetlin G. .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 7 (03) :207-216
[32]   Nonlinear Goursat-Darboux Control Problem: Conditions for the Preservation of Global Solvability [J].
Lisachenko, I. V. ;
Sumin, V. I. .
DIFFERENTIAL EQUATIONS, 2011, 47 (06) :863-876
[33]   Nonlinear Goursat-Darboux control problem: Conditions for the preservation of global solvability [J].
I. V. Lisachenko ;
V. I. Sumin .
Differential Equations, 2011, 47 :863-876
[34]   Global existence and energy decay of solutions to a nonlinear wave equation with a delay term [J].
Benaissa, Abbes ;
Louhibi, Naima .
GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (01) :1-24
[35]   Existence, Asymptotic Behaviour, and Blow up of Solutions for a Class of Nonlinear Wave Equations with Dissipative and Dispersive Terms [J].
Polat, Necat ;
Kaya, Dogan .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (5-6) :315-326
[36]   Existence, non-existence and asymptotic behavior of global solutions to the Cauchy problem for systems of semilinear hyperbolic equations with damping terms [J].
Aliev, Akbar B. ;
Kazimov, Anar A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) :91-102
[37]   Existence and nonexistence of global solutions of the cauchy problem for semilinear hyperbolic equations with dissipation and with anisotropic elliptic part [J].
A. B. Aliev ;
F. V. Mamedov .
Differential Equations, 2010, 46 :309-320
[38]   A new nonlinear wave equation: Darboux transformation and soliton solutions [J].
Geng, Xianguo ;
Shen, Jing ;
Xue, Bo .
WAVE MOTION, 2018, 79 :44-56
[39]   Almost global existence for nonlinear wave equations in an exterior domain in two space dimensions [J].
Kubo, Hideo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (08) :2765-2800
[40]   On the existence of global solutions of a system of semilinear parabolic equations with nonlinear nonlocal boundary conditions [J].
A. L. Gladkov ;
A. I. Nikitin .
Differential Equations, 2016, 52 :467-482