On the existence and absence of global solutions of the first Darboux problem for nonlinear wave equations

被引:0
作者
G. K. Berikelashvili
O. M. Dzhokhadze
B. G. Midodashvili
S. S. Kharibegashvili
机构
[1] Mathematical Institute,
[2] Georgia Technical University,undefined
来源
Differential Equations | 2008年 / 44卷
关键词
Classical Solution; Global Solution; Nonlinear Wave Equation; Global Solvability; Unique Classical Solution;
D O I
暂无
中图分类号
学科分类号
摘要
For the one-dimensional wave equation with a power-law nonlinearity, we consider the first Darboux problem, for which we study issues related to the existence and absence of local and global solutions.
引用
收藏
页码:374 / 389
页数:15
相关论文
共 50 条
[11]   Existence and nonexistence of global solutions for nonlinear transmission acoustic problem [J].
Aliev, Akbar ;
Isayeva, Sevda .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) :3211-3231
[12]   GLOBAL EXISTENCE TO THE INITIAL-BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR DIFFUSION AND WAVE EQUATIONS II [J].
Nakao, Mitsuhiro .
KYUSHU JOURNAL OF MATHEMATICS, 2018, 72 (02) :287-306
[13]   Global existence and blow-up of solutions for coupled bi-harmonic nonlinear wave equations [J].
Ghanmi, Radhia ;
Saanouni, Tarek .
ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2023, 43 (01) :31-47
[14]   Global existence and decay for nonlinear dissipative wave equations with a derivative nonlinearity [J].
Nakao, Mitsuhiro .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2236-2248
[15]   An alternative proof of global existence for nonlinear wave equations in an exterior domain [J].
Katayama, Soichiro ;
Kubo, Hideo .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (04) :1135-1170
[16]   GLOBAL EXISTENCE OF SOLUTION IN THE BESOV SPACE TO THE NONLINEAR WAVE EQUATIONS IN RD [J].
Wu, Xinglong ;
Guo, Boling .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (03) :629-646
[17]   BLOWUP AND EXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR PARABOLIC EQUATIONS WITH DEGENERATE DIFFUSION [J].
Zhang, Zhengce ;
Li, Yan .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
[18]   A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations [J].
Esquivel-Avila, JA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) :1111-1127
[19]   Existence of global solutions for a parabolic system related to the nonlinear stokes problem [J].
Fuchs M. ;
Seregin G.A. .
Journal of Mathematical Sciences, 2008, 152 (5) :769-779
[20]   Global existence of solutions to a one-dimensional nonlinear wave equation [J].
Zeng, Ying ;
Hu, Yanbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (01)