Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors

被引:0
作者
K. Sakai
J. S. Adams
S. R. Bandler
J. A. Chervenak
A. M. Datesman
M. E. Eckart
F. M. Finkbeiner
R. L. Kelley
C. A. Kilbourne
A. R. Miniussi
F. S. Porter
J. S. Sadleir
S. J. Smith
N. A. Wakeham
E. J. Wassell
W. Yoon
H. Akamatsu
M. P. Bruijn
L. Gottardi
B. D. Jackson
J. van der Kuur
B. J. van Leeuwen
A. J. van der Linden
H. J. van Weers
M. Kiviranta
机构
[1] NASA Goddard Space Flight Center,
[2] CRESST II – University of Maryland,undefined
[3] SGT Inc.,undefined
[4] Wyle Information System,undefined
[5] NPP – Universities Space Research Association,undefined
[6] SRON Netherlands Institute for Space Research,undefined
[7] VTT,undefined
来源
Journal of Low Temperature Physics | 2018年 / 193卷
关键词
Transition-edge sensors; Microcalorimeters; Frequency-division multiplexing; Eddy current heating;
D O I
暂无
中图分类号
学科分类号
摘要
We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.
引用
收藏
页码:356 / 364
页数:8
相关论文
共 16 条
[1]  
Gottardi L(2017)undefined IEEE Trans. Appl. Supercond. 27 4-undefined
[2]  
Ullom JN(2004)undefined Appl. Phys. Lett. 84 2-undefined
[3]  
Lindeman MA(2004)undefined Nucl. Instrum. Methods Phys. Res. 520 1-undefined
[4]  
Bruijn MP(2012)undefined J. Low Temp. Phys. 167 5-undefined
[5]  
Kiviranta M(2014)undefined J. Phys. Conf. Ser. 507 4-undefined
[6]  
Grönberg L(2010)undefined Phys. Rev. Lett. 104 047003-undefined
[7]  
Beev N(2013)undefined J. Appl. Phys. 114 7-undefined
[8]  
van der Kuur J(2014)undefined J. Low Temp. Phys. 176 3-undefined
[9]  
Sadleir JE(2012)undefined Appl. Phys. Lett. 101 2-undefined
[10]  
Smith SJ(undefined)undefined undefined undefined undefined-undefined