Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying

被引:0
|
作者
Fatemeh Hejazi
Hamid Mirzadeh
机构
[1] Amirkabir University of Technology (Tehran Polytechnic),Department of Polymer Engineering and Color Technology
来源
Journal of Materials Science: Materials in Medicine | 2016年 / 27卷
关键词
Osteogenic Differentiation; Nanofibrous Scaffold; Nanofibrous Structure; Prepared Scaffold; Tissue Engineering Field;
D O I
暂无
中图分类号
学科分类号
摘要
Developing three dimensional scaffolds mimicking the nanoscale structure of native extracellular matrix is a key parameter in tissue regeneration. In this study, we aimed to introduce a novel 3D structures composed of nanofibers (NF) and micro particles (MP) and compare their efficiency with 2D nanofibrous scaffold. The conventional nanofibrous PCL scaffolds are 2D mats fabricated by the electrospinning technique, whereas the NF/MP and patterned NF/MP PCL scaffolds are three dimensional structures fabricated by a modified electrospinning/electrospraying technique. The mentioned method was carried out by varying the electrospinning solution parameters and use of a metal mesh as the collector. Detailed fabrication process and morphological properties of the fabricated structures is discussed and porosity, pore size and PBS solution absorption value of the prepared structures are reported. Compared with the 2D structure, 3D scaffolds possessed enhanced porosity and pore size which led to the significant increase in their water uptake capacity. In vitro cell experiments were carried out on the prepared structures by the use of MG-63 osteosarcoma cell line. The fabricated 3D structures offered significantly increased cell attachment, spread and diffusion which were confirmed by SEM analysis. In vitro cytocompatibility assessed by MTT colorimetric assay indicated a continuous cell proliferation over 21 days on the innovative 3D structure, while on 2D mat cell proliferation stopped at early time points. Enhanced osteogenic differentiation of the seeded MG-63 cells on 3D scaffold was confirmed by the remarkable ALP activity together with increased and accelerated calcium deposition on this structure compared to 2D mat. Massive and well distributed bone minerals formed on patterned 3D structure were shown by EDX analysis. In comparison between NF/MP quasi-3D and Patterned NF/MP 3D scaffolds, patterned structures proceeded in all of the above properties. As such, the innovative Patterned NF/MP 3D scaffold could be considered as a proper bone graft substitute for bone tissue regeneration.
引用
收藏
相关论文
共 50 条
  • [1] Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying
    Hejazi, Fatemeh
    Mirzadeh, Hamid
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2016, 27 (09)
  • [2] Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration
    Wang, Zhen
    Wang, Yichuan
    Yan, Jiaqi
    Zhang, Keshi
    Lin, Feng
    Xiang, Lei
    Deng, Lianfu
    Guan, Zhenpeng
    Cui, Wenguo
    Zhang, Hongbo
    ADVANCED DRUG DELIVERY REVIEWS, 2021, 174 (174) : 504 - 534
  • [3] An antibacterial Multi-Layered scaffold fabricated by 3D printing and electrospinning methodologies for skin tissue regeneration
    Mirhaj, Marjan
    Varshosaz, Jaleh
    Labbaf, Sheyda
    Emadi, Rahmatollah
    Seifalian, Alexander Marcus
    Sharifianjazi, Fariborz
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2023, 645
  • [4] 3D cell manipulation with honeycomb-patterned scaffold for regeneration of bone-like tissues
    Huan, Zhijie
    Chu, Henry K.
    Yang, Jie
    Sun, Dong
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1680 - 1685
  • [5] Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold
    Yu, Yinxian
    Hua, Sha
    Yang, Mengkai
    Fu, Zeze
    Teng, Songsong
    Niu, Kerun
    Zhao, Qinghua
    Yi, Chengqing
    RSC ADVANCES, 2016, 6 (112): : 110557 - 110565
  • [6] Bioactive Scaffold Fabricated by 3D Printing for Enhancing Osteoporotic Bone Regeneration
    Zhang, Xiaoting
    Wang, Xinluan
    Lee, Yuk-wai
    Feng, Lu
    Wang, Bin
    Pan, Qi
    Meng, Xiangbo
    Cao, Huijuan
    Li, Linlong
    Wang, Haixing
    Bai, Shanshan
    Kong, Lingchi
    Chow, Dick Ho Kiu
    Qin, Ling
    Cui, Liao
    Lin, Sien
    Li, Gang
    BIOENGINEERING-BASEL, 2022, 9 (10):
  • [7] A hybrid electrospinning and electrospraying 3D printing for tissue engineered scaffolds
    Wu, Yang
    Fuh, Jerry
    Wong, Yoke San
    Sun, Jie
    RAPID PROTOTYPING JOURNAL, 2017, 23 (06) : 1011 - 1019
  • [8] 3D printed PCL/SrHA scaffold for enhanced bone regeneration
    Liu, Dinghua
    Nie, Wei
    Li, Dejian
    Wang, Weizhong
    Zheng, Lixia
    Zhang, Jingtian
    Zhang, Jiulong
    Peng, Chen
    Mo, Xiumei
    He, Chuanglong
    CHEMICAL ENGINEERING JOURNAL, 2019, 362 : 269 - 279
  • [9] Pepgen-P15 delivery to bone: A novel 3D printed scaffold for enhanced bone regeneration
    Eshghinejad, Atefeh
    Varshosaz, Jaleh
    Najafinezhad, Aliakbar
    Mirian, Mina
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2024, 101
  • [10] Electrospinning and 3D printed hybrid bi-layer scaffold for guided bone regeneration
    Liu, Jie
    Zou, Qin
    Wang, Chenxin
    Lin, Mingyue
    Li, Yufan
    Zhang, Rui
    Li, Yubao
    MATERIALS & DESIGN, 2021, 210