A nonlinear model for long-memory conditional heteroscedasticity*

被引:0
作者
Paul Doukhan
Ieva Grublyt˙
Donatas Surgailis
机构
[1] Université de Cergy Pontoise,Institute of Mathematics and Informatics
[2] Département de Mathématiques,undefined
[3] Institut Universitaire de France,undefined
[4] IUF,undefined
[5] Vilnius University,undefined
来源
Lithuanian Mathematical Journal | 2016年 / 56卷
关键词
ARCH model; leverage; long memory; Donsker’s invariance principle; 60G10; 60F17;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss a class of conditionally heteroscedastic time series models satisfying the equation rt = ζtσt, where ζt are standardized i.i.d. r.v.s, and the conditional standard deviation σt is a nonlinear function Q of inhomogeneous linear combination of past values rs, s < t, with coefficients bj . The existence of stationary solution rt with finite pth moment, 0 < p < ∞ is obtained under some conditions on Q, bj and the pth moment of ζ0. Weak dependence properties of rt are studied, including the invariance principle for partial sums of Lipschitz functions of rt. In the case where Q is the square root of a quadratic polynomial, we prove that rt can exhibit a leverage effect and long memory in the sense that the squared process rt2 has long-memory autocorrelation and its normalized partial-sum process converges to a fractional Brownian motion.
引用
收藏
页码:164 / 188
页数:24
相关论文
共 39 条
[1]  
Abadir KM(2014)Asymptotic normality for weighted sums of linear processes Econom. Theory 30 252-284
[2]  
Distaso W(2008)Nonlinear models for strongly dependent processes with financial applications J. Econom. 147 60-71
[3]  
Giraitis L(2009)On approximate pseudo-maximum likelihood estimation for larch-processes Bernoulli 15 1057-1081
[4]  
Koul HL(2003)Asymptotic results for long memory LARCH sequences Ann. Appl. Probab. 13 641-668
[5]  
Baillie TR(1986)Generalized autoregressive conditional heteroskedasticity J. Econom. 3 307-327
[6]  
Kapetanios G(1973)Distribution functions inequalities for martingales Ann. Probab. 1 19-42
[7]  
Beran J(2004)Coupling for J. Theor. Probab. 17 861-885
[8]  
Schützner M(2005)-dependent sequences and applications Probab. Theory Relat. Fields 132 203-236
[9]  
Berkes I(2007)New dependence coefficients. Examples and applications to statistics Stochastic Processes Appl. 117 121-142
[10]  
Horváth L(1982)An empirical central limit theorem for dependent sequences Econometrica 50 987-1008