The Log-Exponential Smoothing Technique and Nesterov’s Accelerated Gradient Method for Generalized Sylvester Problems

被引:0
作者
Nguyen Thai An
Daniel Giles
Nguyen Mau Nam
R. Blake Rector
机构
[1] Thua Thien Hue College of Education,Fariborz Maseeh Department of Mathematics and Statistics
[2] Portland State University,undefined
来源
Journal of Optimization Theory and Applications | 2016年 / 168卷
关键词
Log-exponential smoothing technique; Majorization minimization algorithm; Nesterov’s accelerated gradient method ; Generalized Sylvester problem; Primary 49J52; 49J53; Secondary 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
The Sylvester or smallest enclosing circle problem involves finding the smallest circle enclosing a finite number of points in the plane. We consider generalized versions of the Sylvester problem in which the points are replaced by sets. Based on the log-exponential smoothing technique and Nesterov’s accelerated gradient method, we present an effective numerical algorithm for solving these problems.
引用
收藏
页码:559 / 583
页数:24
相关论文
共 45 条
[1]  
Sylvester JJ(1857)A question in the geometry of situation Q. J. Pure Appl. Math. 1 79-274
[2]  
Alonso J(2012)Minimal enclosing discs, circumcircles, and circumcenters in normed planes Comput. Geom. 45 258-160
[3]  
Martini H(2006)On the smallest enclosing balls Commun. Inf. Syst. 6 137-378
[4]  
Spirova M(2004)The smallest enclosing ball of balls: combinatorial structure and algorithms Comput. Geom. 14 341-795
[5]  
Cheng C(1981)Efficient algorithms for the (weighted) minimum circle problem Oper. Res. 30 777-414
[6]  
Hu X(2009)Approximating smallest enclosing balls with applications to machine learning Int. J. Comput. Geom. Appl. 19 389-641
[7]  
Martin C(2006)On the minimum volume covering ellipsoid of ellipsoids SIAM J. Optim. 17 621-1391
[8]  
Fischer K(2008)Two algorithms for the minimum enclosing ball problem SIAM J. Optim. 19 1368-160
[9]  
Gartner B(2005)Efficient algorithms for the smallest enclosing ball problem Comput. Optim. Appl. 30 147-518
[10]  
Hearn DW(2012)Applications of convex analysis to the smallest intersecting ball problem J. Convex Anal. 19 497-853