Variance-Constrained Resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} State Estimation for Time-Varying Neural Networks with Random Saturation Observation Under Uncertain Occurrence Probability

被引:0
作者
Yan Gao
Jun Hu
Hui Yu
Junhua Du
Chaoqing Jia
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Harbin University of Science and Technology,School of Automation
[3] Harbin University of Science and Technology,Heilongjiang Provincial Key Laboratory of Optimization Control and Intelligent Analysis for Complex Systems
[4] Harbin University of Science and Technology,Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration
[5] Qiqihar University,College of Science
关键词
Time-varying uncertain neural networks; Uncertain occurrence probability; performance; Random saturation observation; Variance constraint;
D O I
10.1007/s11063-022-11078-z
中图分类号
学科分类号
摘要
This paper studies the variance-constrained resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} state estimation problem for discrete time-varying uncertain recurrent neural networks with random saturation observation under uncertain occurrence probability. In fact, the state estimation problem of stochastic recurrent neural networks with time-varying parameters has significant importance and wide applications. In order to characterize the realistic transmission process of neural signals, the phenomenon of random saturation observation is represented by introducing a random variable. In addition, the estimator gain is allowed to satisfy parameter perturbations to reflect the fragility of the estimator. The main objective is to present a finite-horizon resilient state estimation scheme without utilizing the augmentation method such that, in the presence of estimator parameter perturbations and random saturation observation, some sufficient criteria are obtained for the estimation error dynamical system satisfying both the pre-defined H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance constraint and the error variance boundedness. Finally, a numerical example demonstrates the feasibility of the presented resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} SE method under variance constraint. From the engineering viewpoint, the proposed state estimation method under variance constraint has time-varying characteristics, which is suitable for online estimation applications. Moreover, both the state estimation and original neural state have the same order, which can reduce the computation burden.
引用
收藏
页码:5031 / 5054
页数:23
相关论文
共 169 条
  • [11] Wang N(2019)Image processing based obstacle avoidance control for mobile robot by recurrent fuzzy neural network Neural Process Lett 50 2249-2262
  • [12] Li Y(2017)Sampled-data state estimation of neutral type neural networks with mixed time-varying delays Fuzzy Sets Syst 306 1009-1029
  • [13] Shi K(2018)State estimation of T-S fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control Nonlinear Dyn 93 4437-4450
  • [14] Lu J(2017)Quantized energy-to-peak state estimation for persistent dwell-time switched neural networks with packet dropouts Neural Process Lett 46 395-406
  • [15] Nagamani G(2020)Robust state estimation for delayed complex-valued neural networks IEEE Trans Neural Net Learn Syst 31 2001-2019
  • [16] Karnan A(2019)Event-triggered synchronization for neutral-type semi-Markovian neural networks with partial mode-dependent time-varying delays Neurocomputing 333 941-944
  • [17] Soundararajan G(2020)Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump Int J Robust Nonlinear Control 30 2479-2489
  • [18] Shen H(2022)Stochastic robust finite-time boundedness for semi-Markov jump uncertain neutral-type neural networks with mixed time-varying delays via a generalized reciprocally convex combination inequality IEEE/CAA J Automatica Sinica 9 1792-1799
  • [19] Xing M(2019)Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints IEEE Trans Cybernetics 49 3788-3800
  • [20] Huo S(2020)Resilient state estimation for 2-D time-varying systems with redundant channels: a variance-constrained approach IEEE Trans Autom Control 65 2284-2289