Variance-Constrained Resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} State Estimation for Time-Varying Neural Networks with Random Saturation Observation Under Uncertain Occurrence Probability

被引:0
作者
Yan Gao
Jun Hu
Hui Yu
Junhua Du
Chaoqing Jia
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] Harbin University of Science and Technology,School of Automation
[3] Harbin University of Science and Technology,Heilongjiang Provincial Key Laboratory of Optimization Control and Intelligent Analysis for Complex Systems
[4] Harbin University of Science and Technology,Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration
[5] Qiqihar University,College of Science
关键词
Time-varying uncertain neural networks; Uncertain occurrence probability; performance; Random saturation observation; Variance constraint;
D O I
10.1007/s11063-022-11078-z
中图分类号
学科分类号
摘要
This paper studies the variance-constrained resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} state estimation problem for discrete time-varying uncertain recurrent neural networks with random saturation observation under uncertain occurrence probability. In fact, the state estimation problem of stochastic recurrent neural networks with time-varying parameters has significant importance and wide applications. In order to characterize the realistic transmission process of neural signals, the phenomenon of random saturation observation is represented by introducing a random variable. In addition, the estimator gain is allowed to satisfy parameter perturbations to reflect the fragility of the estimator. The main objective is to present a finite-horizon resilient state estimation scheme without utilizing the augmentation method such that, in the presence of estimator parameter perturbations and random saturation observation, some sufficient criteria are obtained for the estimation error dynamical system satisfying both the pre-defined H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance constraint and the error variance boundedness. Finally, a numerical example demonstrates the feasibility of the presented resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} SE method under variance constraint. From the engineering viewpoint, the proposed state estimation method under variance constraint has time-varying characteristics, which is suitable for online estimation applications. Moreover, both the state estimation and original neural state have the same order, which can reduce the computation burden.
引用
收藏
页码:5031 / 5054
页数:23
相关论文
共 169 条
  • [1] Sakthivel R(2021)Finite-time synchronization of hierarchical hybrid coupled neural networks with mismatched quantization Neural Comput Appl 33 16881-16897
  • [2] Aravinth N(2021)Disturbance rejection for singular semi-Markov jump neural networks with input saturation Appl Mathemat Comput 407 46-65
  • [3] Aouiti C(2022)Almost periodic synchronization of quaternion-valued fuzzy cellular neural networks with leakage delays Fuzzy Sets Syst 426 3179-3203
  • [4] Arumugam K(2021)Delay-dependent and independent state estimation for BAM cellular neural networks with multi-proportional delays Circuits Syst Signal Proc 40 113-128
  • [5] Sakthivel R(2019)Finite-time Fuzzy Sets Syst 356 2007-2020
  • [6] Sakthivel R(2019) asynchronous state estimation for discrete-time fuzzy Markov jump neural networks with uncertain measurements Neural Process Lett 50 24-38
  • [7] Kwon OM(2020)Adaptive state estimation of stochastic delayed neural networks with fractional Brownian motion IEEE Trans Neural Net Learning Syst 31 2039-2054
  • [8] Selvaraj P(2021)Spatially arranged sparse recurrent neural networks for energy efficient associative memory Wireless Netw 27 2747-2754
  • [9] Wang P(2020)Energy-efficient event pattern recognition in wireless sensor networks using multilayer spiking neural networks Automatica 120 357-378
  • [10] Li X(2014)Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered transmission J Intell Fuzzy Syst 26 87-104