Confidence bands for Brownian motion and applications to Monte Carlo simulation

被引:0
作者
W. S. Kendall
J.-M. Marin
C. P. Robert
机构
[1] University of Warwick,Department of Statistics
[2] Université d’Orsay (Bât. 425),Projet select,INRIAfuturs,Laboratoire de Mathématiques
[3] Université Paris Dauphine and CREST,CEREMADE
[4] INSEE,undefined
来源
Statistics and Computing | 2007年 / 17卷
关键词
Boundary crossing probability; Brownian motion; Central limit theorem; CUSUM; Local time; Monte Carlo path; Simultaneous confidence region;
D O I
暂无
中图分类号
学科分类号
摘要
Minimal area regions are constructed for Brownian paths and perturbed Brownian paths. While the theoretical optimal region cannot be obtained in closed form, we provide practical confidence regions based on numerical approximations and local time arguments. These regions are used to provide informal convergence assessments for both Monte Carlo and Markov Chain Monte Carlo experiments, via the Brownian asymptotic approximation of cumulative sums.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 24 条
  • [1] Anderson T.(1960)A modification of the sequential probability ratio test to reduce the sample size Ann. Math. Statist. 31 165-197
  • [2] Corless R.(1996)On the Lambert W function Adv. Computational Math. 5 329-359
  • [3] Gonnet G.(1996)Approximating the first crossing-time density for a curved boundary Bernoulli 2 133-143
  • [4] Hare E.(1971)Boundary crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test J. Appl. Prob. 8 431-453
  • [5] Jeffrey D.(1992)The first-passage density of the Brownian motion process to a curved boundary J. Appl. Prob. 29 291-304
  • [6] Knuth D.(1997)The distribution of Brownian motion on linear stopping boundaries Sequential Anal. 4 345-352
  • [7] Daniels H.(2003)The first exit time of a Brownian motion from an unbounded convex domain Ann. Prob. 31 1078-1096
  • [8] Durbin J.(1987)Computations of boundary crossing probabilities for the wiener process J. Stat. Comp. Simul. 27 96-105
  • [9] Durbin J.(1999)Approximation of boundary crossing probabilities for a Brownian motion J. Appl. Prob. 36 1019-1030
  • [10] Hall W.(1976)Evaluation of barrier crossing probabilities for Wiener path J. Appl. Prob. 17 197-201