The disconnection exponent for simple random walk

被引:0
作者
Gregory F. Lawler
Emily E. Puckette
机构
[1] Duke University,Department of Mathematics
[2] Occidental College,Department of Mathematics
来源
Israel Journal of Mathematics | 1997年 / 99卷
关键词
Brownian Motion; Random Walk; Critical Exponent; Conformal Field Theory; Simple Random Walk;
D O I
暂无
中图分类号
学科分类号
摘要
LetS(t) denote a simple random walk inZ2 with integer timet. The disconnection exponent\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \gamma $$ \end{document} is defined by saying the probability that the path ofS starting at 0 and ending at the circle of radiusn disconnects 0 from infinity decays like\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n^{ - \bar \gamma } $$ \end{document}. We prove that the disconnection exponent is well-defined and equals the disconnection exponent for Brownian motion which is known to exist.
引用
收藏
页码:109 / 121
页数:12
相关论文
共 17 条
[1]  
Burdzy K.(1990)Nonintersection exponents for Brownian paths. Part I. Existence and an invariance principle Probability Theory and Related Fields 84 393-410
[2]  
Lawler G.(1990)Nonintersection exponents for Brownian paths. Part II. Estimates and applications to a random fractal The Annals of Probability 18 981-1009
[3]  
Burdzy K.(1989)On the critical exponent for random walk intersections Journal of Statistical Physics 56 1-12
[4]  
Lawler G.(1991)An Extension of a Result of Brudzy and Lawler Probability Theory and Related Fields 89 487-502
[5]  
Burdzy K.(1993)The geometry of the Brownian curve Bulletin de Sciences Mathématiques 2e série 117 91-106
[6]  
Lawler G.(1976)An approximation theorem of partial sums of independent R. V.’s and the sample DF. II Zeitschrift für Wahrscheinlichkeits-theorie und Verwandte Gebiete 34 33-58
[7]  
Polaski T.(1995)On Brownian disconnection exponents Bernoulli 1 371-380
[8]  
Cranston M. C.(undefined)undefined undefined undefined undefined-undefined
[9]  
Mountford T. S.(undefined)undefined undefined undefined undefined-undefined
[10]  
Duplantier B.(undefined)undefined undefined undefined undefined-undefined