Rough Bilinear Hypersingular Integrals

被引:0
作者
Yige Cui
Honghai Liu
Zengyan Si
Hanbin Wang
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
Potential Analysis | 2023年 / 59卷
关键词
Hypersingular integrals; Rough kernel; Bilinear operator; Wavelet; Primary 42B20; Secondary 42B99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the rough bilinear hypersingular integral operator Ts(f,g)(x)=p.v.∫ℝ2nΩ((y,z)′)|(y,z)|2n+sf(x−y)g(x−z)dydz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_{s}(f,g)(x)=\textrm{p.v.}{\int}_{\mathbb{R}^{2n}}\frac{\Omega((y,z)^{\prime})}{|(y,z)|^{2n+s}}f(x-y)g(x-z)dydz, $$\end{document} defined on all test functions f,g, where s ≥ 0, Ω is a function in Lq(S2n− 1) satisfying certain cancellation condition. For s ≥ 0, we obtain boundedness for Ts with Ω in L∞(S2n−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(\mathbf {S}^{2n-1})$\end{document}. The result extends some known results on bilinear singular integrals and linear hypersingular integrals.
引用
收藏
页码:1547 / 1569
页数:22
相关论文
共 52 条
[1]  
Bartl M(2007)On hyper-singular integral operators with variable kernels J. Math. Anal. Appl. 328 730-742
[2]  
Fan D(2014)Bilinear Sobolev-Poincaré inequalities and Leibniz-type rules J. Geom. Anal. 24 1144-1180
[3]  
Bernicot F(2014)On an endpoint Kato-Ponce inequality Differ. Integral Equ. 27 1037-1072
[4]  
Maldonado D(2008)Operators with rough singular kernels J. Math. Anal. Appl. 337 906-918
[5]  
Moen K(2006)A rough hypersingular integral operator with an oscillating factor J. Math. Anal. Appl. 322 873-885
[6]  
Naibo V(2003)Certain operators with rough singular kernels Canad. J. Math. 55 504-532
[7]  
Bourgain J(2011)The boundedness for commutators of a class of maximal hypersingular integrals with variable kernels Nonlinear Analysis: TMA. 74 4918-4940
[8]  
Li D(2010)Boundedness for commutator of rough hypersingular integrals with variable kernels, Michigan Math. J. 59 189-210
[9]  
Chen D(1991)Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation J. Funct. Anal. 100 87-109
[10]  
Ding Y(1975)On commutators of singular integrals and bilinear singular integrals Trans. Amer. Math. Soc. 212 315-331