Existence and regularity of solutions in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-norm for some partial functional integrodifferential equations in banach spaces

被引:0
作者
Issa Zabsonre
Djendode Mbainadji
机构
[1] Université Joseph KI-ZERBO,
[2] Département de Mathématiques,undefined
[3] Unité de Recherche et de Formation en Sciences Exactes et Appliquées,undefined
关键词
Resolvent operator; Fractional ; -power; -Semigroup; Mild and strict solutions; Partial functional integrodifferential equations; 34K30; 45N05;
D O I
10.1007/s40324-020-00221-2
中图分类号
学科分类号
摘要
In this work, we study the existence and regularity of solutions in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-norm for some partial functional integrodifferential equations in Banach spaces. We suppose that the undelayed part admits a resolvent operator, the delayed part is assumed to be locally lipschitz. Firstly, we show the existence of mild solutions. Secondly, we give sufficiently conditions ensuring the existence of strict solutions.
引用
收藏
页码:415 / 433
页数:18
相关论文
共 20 条
[1]  
Diao B(2015)Existence results in the Afrika matematica 26 1621-1635
[2]  
Ezzinbi K(1984)-norm for a class of neutral partial functional integro-differential equation J. Math. Anal. Appl. 104 219-234
[3]  
Sy M(2009)Some considerations for linear integrodifferential equtions Nonlinear Anal. 70 2761-2771
[4]  
Desch W(2016)Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces Appl. Anal. 95 1271-1279
[5]  
Grimmer R(2012)Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices Appl. Anal. 91 1741-1747
[6]  
Schappacher W(1983)A new regularity criterion for the nematic liquid crystal flows J. Differ. Equ. 50 234-259
[7]  
Ezzinbi K(1982)Analytic resolvent operators for integral equations in a Banach space Trans. Am. Math. Soc. 273 333-349
[8]  
Touré H(1999)Resolvent operators for integral equations in a Banach space Comment. Math. Univ. Carolin. 40 651-663
[9]  
Zabsonré I(1978)Elliptic boundary value problem in vanishing mean oscillation hypothesis Trans. Am. Math. Soc. 240 129-143
[10]  
Gala S(undefined)Existence, stability, and compactness in the undefined undefined undefined-undefined