Recognizing Simple K4-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4-$$\end{document}Groups by Few Special Conjugacy Class Sizes

被引:1
作者
Yanheng Chen
Guiyun Chen
Jinbao Li
机构
[1] Southwest University Chongqing,School of Mathematics and Statistics
[2] Chongqing Three Gorges University,School of Mathematics and Statistics
[3] Chongqing University of Arts and Sciences,Department of Mathematics
关键词
Simple ; groups; Conjugacy class size; Prime graph; Thompson’s conjecture; 20D08; 20D60;
D O I
10.1007/s40840-014-0003-2
中图分类号
学科分类号
摘要
In 1987, J. G. Thompson put forward the following conjecture: Let G be a finite group with trivial center. If L is a finite simple group satisfying thatN(G)=N(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(G)=N(L)$$\end{document}, thenG≅L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong L$$\end{document}. The second author proved above conjecture holds for finite simple groups with non-connected prime graphs. Vasilev proved above conjecture holds for two simple groups with connected prime graphs: A10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{10}$$\end{document} and L4(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_4(4)$$\end{document}. N. Ahanjideh proved that Thompson’s conjecture is true for Ln(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n(q)$$\end{document}. The authors are interested in if it is possible to weaken the conditions in the conjecture. A finite simple group is called a simple Kn-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n-$$\end{document}group if its order is divisible by exactly n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} distinct primes. Here, the authors prove that simple K4-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4-$$\end{document}groups are characterized by their orders and few special conjugacy class sizes, which implies that Thompson’s conjecture is valid for simple K4-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4-$$\end{document}groups.
引用
收藏
页码:51 / 72
页数:21
相关论文
共 29 条
[1]  
Ahanjideh N(2011)On Thompson’s conjecture for some finite simple groups J. Algerba 344 205-228
[2]  
Chen GY(1996)On Thompson’s conjecture J. Algebra 185 184-193
[3]  
Chen GY(1999)Further reflections on Thompson’s conjecture J. Algebra 218 276-285
[4]  
Chen GY(1995)On Frobenius and 2-Frobeniusgroup J. Southwest China Norm. Univ. 20 485-487
[5]  
Vasil’ev AV(2009)On Thompson’s conjecture Siberian Electron. Math. Rep. 6 457-464
[6]  
Williams JS(1981)Prime graph components of finite groups J. Algebra 69 487-513
[7]  
Herzog M(1968)On finite simple groups of order divisible by three primes only J. Algebra 120 383-388
[8]  
Shi WJ(1991)On simple Chin. Sci. Bull. 36 1281-1283
[9]  
Huppert B(2000)groups Proc. F.Scorina Gomel State Univ. 16 64-75
[10]  
Lempken W(2003)Simple groups of order divisible by at most four primes Comm. Algebra 31 4405-4424