A fixed point theorem in the space of integrable functions and applications

被引:0
作者
G. J. de Cabral-García
K. Baquero-Mariaca
J. Villa-Morales
机构
[1] Universidad Autónoma de Aguascalientes,Departamento de Matemáticas y Física
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2023年 / 72卷
关键词
Fixed point theorem; Uniform integrability; Fredholm equations; Caputo fractional equations; Sequential compactness; Primary 47H10; Secondary 54C05;
D O I
暂无
中图分类号
学科分类号
摘要
We give sufficient conditions to ensure when a mapping T:E→E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:\varvec{E} \rightarrow \varvec{E}$$\end{document} has a unique fixed point, E is a set of measurable functions that is uniformly continuous, closed, and convex. The proof of the existence of the fixed point depends on a certain type of sequential compactness for uniformly integrable functions that is also studied. The fixed point theorem is applied in the study of the uniqueness and existence of some Fredholm and Caputo equations.
引用
收藏
页码:655 / 672
页数:17
相关论文
共 33 条
  • [1] Adigüzel RS(2020)On the solution of a boundary value problem associated with a fractional differential equation Math. Meth. Appl. Sci. 20 313-333
  • [2] Aksoy U(2021)Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions RACSAM 61 3370-3380
  • [3] Karapinar E(2021)On the solutions of fractional differential equations via geraghty type hybrid contractions Appl. Comput. Math. 17 455-475
  • [4] Erhan IM(2015)A generalized metric space and related fixed point theorems J. Fixed Point Theory Appl. 159 911-920
  • [5] Adigüzel RS(2012)Edelstein type fixed point theorems Fixed Point Theory Appl. 2 103-112
  • [6] Aksoy U(2011)Generalized ( Comp. Math. App. 76 493-494
  • [7] Karapinar E(2015)) -conditions and related fixed point theorems J. Fixed Point Theory Appl. 7 2154-2165
  • [8] Erhan IM(2012)Generalized metrics paces: Asurvey Topol. Appl. 2 180-182
  • [9] Adigüzel RS(2005)Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces Mediterr. J. Math. undefined undefined-undefined
  • [10] Aksoy U(2010)A minimax theorem without compactness hypothesis Branciari. Publ. Math. Debrecen undefined undefined-undefined