Existence of solutions for some quasilinear parabolic systems in Orlicz spaces

被引:0
作者
Elhoussine Azroul
Farah Balaadich
机构
[1] Faculty of Sciences Dhar El Mehraz,Department of Mathematics
来源
São Paulo Journal of Mathematical Sciences | 2022年 / 16卷
关键词
Quasilinear parabolic systems; Orlicz spaces; Young measures; 35K59; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence theorem for quasilinear parabolic problems of the form ∂u∂t-div(σ(x,t,Du)+Φ(x,t,u))=finQ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial t}-\text {div}\big (\sigma (x,t,Du)+\varPhi (x,t,u)\big )=f\quad \text {in}\;Q, \end{aligned}$$\end{document}where f belongs to W-1,xEM¯(Q;Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{-1,x}E_{\overline{M}}(Q;\mathbb {R}^m)$$\end{document}. The function σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} and the lower term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi$$\end{document} satisfy some conditions which will be used to prove the needed result through the theory of Young measures.
引用
收藏
页码:1327 / 1342
页数:15
相关论文
共 50 条
[41]   On existence theorems for coupled systems of quadratic Hammerstein-Urysohn integral equations in Orlicz spaces [J].
Alsaadi, Ateq ;
Metwali, Mohamed M. A. .
AIMS MATHEMATICS, 2022, 7 (09) :16278-16295
[42]   On Solutions of Quadratic Integral Equations in Orlicz Spaces [J].
Cichon, Mieczyslaw ;
Metwali, Mohamed M. A. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) :901-920
[43]   SOLUTIONS OF A SYSTEM OF INTEGRAL EQUATIONS IN ORLICZ SPACES [J].
Agarwal, Ravi P. ;
O'regan, Donal ;
Wong, Patricia J. Y. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2009, 21 (04) :469-498
[44]   On Solutions of Quadratic Integral Equations in Orlicz Spaces [J].
Mieczysław Cichoń ;
Mohamed M. A. Metwali .
Mediterranean Journal of Mathematics, 2015, 12 :901-920
[45]   Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces [J].
Wang, Lihe ;
Yao, Fengping .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (08) :3495-3517
[46]   Hessian estimates in Orlicz spaces for fourth-order parabolic systems in non-smooth domains [J].
Byun, Sun-Sig .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (09) :3518-3534
[47]   SOME CLASSES OF COMPOSITION OPERATORS ON ORLICZ SPACES [J].
Estaremi, Yousef ;
Huang, Zhidong .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (06) :1685-1703
[48]   ON QUASILINEAR PARABOLIC SYSTEMS AND FBSDES OF QUADRATIC GROWTH [J].
Jackson, Joe .
ANNALS OF APPLIED PROBABILITY, 2024, 34 (1A) :357-387
[49]   Existence of solutions for parabolic variational inequalities [J].
Farah Balaadich .
Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 :731-745
[50]   Existence of solutions for parabolic variational inequalities [J].
Balaadich, Farah .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) :731-745