Existence of solutions for some quasilinear parabolic systems in Orlicz spaces

被引:0
作者
Elhoussine Azroul
Farah Balaadich
机构
[1] Faculty of Sciences Dhar El Mehraz,Department of Mathematics
来源
São Paulo Journal of Mathematical Sciences | 2022年 / 16卷
关键词
Quasilinear parabolic systems; Orlicz spaces; Young measures; 35K59; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence theorem for quasilinear parabolic problems of the form ∂u∂t-div(σ(x,t,Du)+Φ(x,t,u))=finQ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial t}-\text {div}\big (\sigma (x,t,Du)+\varPhi (x,t,u)\big )=f\quad \text {in}\;Q, \end{aligned}$$\end{document}where f belongs to W-1,xEM¯(Q;Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{-1,x}E_{\overline{M}}(Q;\mathbb {R}^m)$$\end{document}. The function σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} and the lower term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi$$\end{document} satisfy some conditions which will be used to prove the needed result through the theory of Young measures.
引用
收藏
页码:1327 / 1342
页数:15
相关论文
共 50 条
[31]   Classical solutions of quasilinear parabolic systems on two dimensional domains [J].
Hans-Christoph Kaiser ;
Hagen Neidhardt ;
Joachim Rehberg .
Nonlinear Differential Equations and Applications NoDEA, 2006, 13 :287-310
[32]   Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions [J].
Pao, C. V. ;
Ruan, W. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :472-499
[33]   Classical solutions of quasilinear parabolic systems on two dimensional domains [J].
Kaiser, Hans-Christoph ;
Neidhardt, Hagen ;
Rehberg, Joachim .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 13 (03) :287-310
[34]   An existence theorem for weak solutions for a class of elliptic partial differential systems in general Orlicz-Sobolev spaces [J].
Dong, Ge .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (07) :2049-2057
[35]   On the existence of standing wave solutions for a class of quasilinear Schrodinger systems [J].
Severo, Uberlandio ;
da Silva, Edcarlos .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) :763-775
[36]   BOUNDEDNESS AND BLOWUP SOLUTIONS FOR QUASILINEAR PARABOLIC SYSTEMS WITH LOWER ORDER TERMS [J].
Chen, Shaohua .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) :587-600
[37]   On the Existence of Two-Dimensional Solutions to the Magnetohydrodynamic Equations of a Compressible Flow in Orlicz Spaces [J].
Muhammad, Jan .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2025, 51 (02)
[38]   Strongly nonlinear periodic parabolic equation in Orlicz spaces [J].
Ghita, Erriahi Elidrissi ;
Elhoussine, Azroul ;
Abdelilah, Lamrani Alaoui .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2025, 70 (01) :51-67
[39]   Partial regularity for solutions of quasilinear parabolic systems with nonsmooth in time principal matrix [J].
Arkhipova, Arina A. ;
Stara, Jana ;
John, Oldrich .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :421-435
[40]   WEIGHTED REGULARITY ESTIMATES IN ORLICZ SPACES FOR THE PARABOLIC SCHRODINGER OPERATORS [J].
Yao, Fengping .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02) :643-661