Existence of solutions for some quasilinear parabolic systems in Orlicz spaces

被引:0
作者
Elhoussine Azroul
Farah Balaadich
机构
[1] Faculty of Sciences Dhar El Mehraz,Department of Mathematics
来源
São Paulo Journal of Mathematical Sciences | 2022年 / 16卷
关键词
Quasilinear parabolic systems; Orlicz spaces; Young measures; 35K59; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence theorem for quasilinear parabolic problems of the form ∂u∂t-div(σ(x,t,Du)+Φ(x,t,u))=finQ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial t}-\text {div}\big (\sigma (x,t,Du)+\varPhi (x,t,u)\big )=f\quad \text {in}\;Q, \end{aligned}$$\end{document}where f belongs to W-1,xEM¯(Q;Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{-1,x}E_{\overline{M}}(Q;\mathbb {R}^m)$$\end{document}. The function σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} and the lower term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi$$\end{document} satisfy some conditions which will be used to prove the needed result through the theory of Young measures.
引用
收藏
页码:1327 / 1342
页数:15
相关论文
共 50 条
[21]   Strongly quasilinear parabolic systems [J].
Balaadich, Farah ;
Azroul, Elhoussine .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (02) :341-357
[22]   Global and blowup solutions for general quasilinear parabolic systems [J].
Chen, Shaohua ;
MacDonald, Kristen .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :423-433
[23]   Some degenerate and quasilinear parabolic systems not in divergence form [J].
Wang, MX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (01) :424-436
[24]   Quasilinear elliptic systems with nonstandard growth conditions in Orlicz-Sobolev spaces [J].
Balaadich, Farah ;
Azroul, Elhoussine .
AFRIKA MATEMATIKA, 2023, 34 (04)
[25]   Quasilinear elliptic systems with nonstandard growth conditions in Orlicz-Sobolev spaces [J].
Farah Balaadich ;
Elhoussine Azroul .
Afrika Matematika, 2023, 34
[26]   Global existence for quasilinear parabolic systems with homogeneous Neumann boundary conditions [J].
Zhaoyang YIN .
Nonlinear Differential Equations and Applications NoDEA, 2006, 13 :235-248
[27]   Global existence for quasilinear parabolic systems with homogeneous Neumann boundary conditions [J].
Yin, Zhaoyang .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 13 (02) :235-248
[28]   Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces [J].
Gwiazda, P. ;
Wittbold, P. ;
Wroblewska-Kaminska, A. ;
Zimmermann, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 :1-36
[29]   EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE QUASILINEAR PROBLEMS THROUGH ORLICZ-SOBOLEV SPACE [J].
Alves, Claudianor O. ;
De Holanda, Angelo R. F. ;
Santos, Jefferson A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (01) :285-299
[30]   Periodic solutions of quasilinear parabolic systems with nonlinear boundary conditions [J].
Zhang, Qunying ;
Lin, Zhigui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) :3429-3435