Existence of solutions for some quasilinear parabolic systems in Orlicz spaces

被引:0
作者
Elhoussine Azroul
Farah Balaadich
机构
[1] Faculty of Sciences Dhar El Mehraz,Department of Mathematics
来源
São Paulo Journal of Mathematical Sciences | 2022年 / 16卷
关键词
Quasilinear parabolic systems; Orlicz spaces; Young measures; 35K59; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence theorem for quasilinear parabolic problems of the form ∂u∂t-div(σ(x,t,Du)+Φ(x,t,u))=finQ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial t}-\text {div}\big (\sigma (x,t,Du)+\varPhi (x,t,u)\big )=f\quad \text {in}\;Q, \end{aligned}$$\end{document}where f belongs to W-1,xEM¯(Q;Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{-1,x}E_{\overline{M}}(Q;\mathbb {R}^m)$$\end{document}. The function σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} and the lower term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi$$\end{document} satisfy some conditions which will be used to prove the needed result through the theory of Young measures.
引用
收藏
页码:1327 / 1342
页数:15
相关论文
共 50 条
[1]   Existence of solutions for some quasilinear parabolic systems in Orlicz spaces [J].
Azroul, Elhoussine ;
Balaadich, Farah .
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02) :1327-1342
[2]   Existence of weak solutions for quasilinear elliptic systems in Orlicz spaces [J].
Azroul, Elhoussine ;
Balaadich, Farah .
APPLICABLE ANALYSIS, 2019,
[3]   Existence and Uniqueness Results for Quasilinear Parabolic Systems in Orlicz Spaces [J].
Balaadich, Farah ;
Azroul, Elhoussine .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (03) :407-421
[4]   Existence and Uniqueness Results for Quasilinear Parabolic Systems in Orlicz Spaces [J].
Farah Balaadich ;
Elhoussine Azroul .
Journal of Dynamical and Control Systems, 2020, 26 :407-421
[5]   EXISTENCE OF BOUNDED SOLUTIONS FOR QUASILINEAR PARABOLIC SYSTEMS WITH QUADRATIC GROWTH [J].
Souilah, Rezak .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[6]   Existence of renormalized solutions for some nonlinear elliptic equations in Orlicz spaces [J].
M. Bourahma ;
A. Benkirane ;
J. Bennouna .
Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 :231-252
[7]   Existence of renormalized solutions for some nonlinear elliptic equations in Orlicz spaces [J].
Bourahma, M. ;
Benkirane, A. ;
Bennouna, J. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) :231-252
[8]   Global existence of solutions for quasilinear parabolic systems with the cross-diffusion effect [J].
Yang, WL ;
Zhou, HY ;
Cho, YJ .
DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, :205-222
[9]   EXISTENCE OF WEAK SOLUTIONS FOR QUASILINEAR PARABOLIC SYSTEMS IN DIVERGENCE FORM WITH VARIABLE GROWTH [J].
Yang, Miaomiao ;
Fu, Yongqiang .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
[10]   Global existence of solutions for a class of the quasilinear parabolic systems arising in population dynamics [J].
Yang, WL .
CONTEMPORARY DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, :105-116