Stretching and Rotation of Planar Quasiconformal Mappings on a Line

被引:0
作者
Olli Hirviniemi
István Prause
Eero Saksman
机构
[1] University of Helsinki,Department of Mathematics and Statistics
[2] University of Eastern Finland,Department of Physics and Mathematics
来源
Potential Analysis | 2023年 / 59卷
关键词
Quasiconformal mappings; Holomorphic motions; Stretching and rotation; Primary 30C62;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we examine stretching and rotation of planar quasiconformal mappings on a line. We show that for almost every point on the line, the set of complex stretching exponents (describing stretching and rotation jointly) is contained in the disk B¯(1/(1−k4),k2/(1−k4))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \overline {B}(1/(1-k^{4}),k^{2}/(1-k^{4}))$\end{document}. This yields a quadratic improvement over the known optimal estimate for general sets of Hausdorff dimension 1. Our proof is based on holomorphic motions and estimates for dimensions of quasicircles. We also give a lower bound for the dimension of the image of a 1-dimensional subset of a line under a quasiconformal mapping.
引用
收藏
页码:337 / 347
页数:10
相关论文
共 50 条