Three-point functions in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM at finite Nc and background independence

被引:0
作者
Ryo Suzuki [1 ]
机构
[1] Shing-Tung Yau Center of Southeast University,
关键词
AdS-CFT Correspondence; 1/N Expansion; Matrix Models;
D O I
10.1007/JHEP05(2020)118
中图分类号
学科分类号
摘要
We compute non-extremal three-point functions of scalar operators in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills at tree-level in gYM and at finite Nc, using the operator basis of the restricted Schur characters. We make use of the diagrammatic methods called quiver calculus to simplify the three-point functions. The results involve an invariant product of the generalized Racah-Wigner tensors (6j symbols). Assuming that the invariant product is written by the Littlewood-Richardson coefficients, we show that the non-extremal three- point functions satisfy the large Nc background independence; correspondence between the string excitations on AdS5× S5 and those in the LLM geometry.
引用
收藏
相关论文
empty
未找到相关数据