Approximate controllability results for the Sobolev type fractional delay impulsive integrodifferential inclusions of order r∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${r} \in (1,2)$$\end{document} via sectorial operator

被引:0
作者
M. Mohan Raja
V. Vijayakumar
机构
[1] Vellore Institute of Technology,Department of Mathematics, School of Advanced Sciences
关键词
Fractional calculus (primary); Infinite delay; Sobolev type; Impulsive systems; Integrodifferential systems; Sectorial operators; Nonlocal conditions; 26A33 (primary); 34A08; 34K30; 35R12; 46E36; 47B12; 47B12; 93B05;
D O I
10.1007/s13540-023-00167-y
中图分类号
学科分类号
摘要
In this study, we investigate nonlocal problems for a class of the Sobolev type fractional delay impulsive integrodifferential inclusions of order r∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${r} \in (1,2)$$\end{document} via sectorial operator in Hilbert space. The results are obtained by engaging of mixed Volterra-Fredholm integrodifferential systems, sectorial operator of type (P,κ,r,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P,\kappa ,{r},\gamma )$$\end{document} and Martelli’s fixed point theorem under the assumption that the corresponding linear system is approximately controllable. Finally, an example is given to illustrate the effectiveness of the results obtained.
引用
收藏
页码:1740 / 1769
页数:29
相关论文
共 93 条
  • [1] Byszewski L(1991)Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem J. Math. Anal. Appl. 162 494-505
  • [2] Byszewski L(1997)On a mild solution of a semilinear functional-differential evolution nonlocal problem Int. J. Stoch. Anal. 10 265-271
  • [3] Akca H(2007)Controllability of impulsive functional differential systems with infinite delay in Banach spaces Chaos Solit. Fractals 33 1601-1609
  • [4] Chang YK(2021)Solvability and optimal controls of non-instantaneous impulsive stochastic fractional differential equation of order Stochastic 93 780-802
  • [5] Dhayal R(2021)A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order Math. Comput. Simul. 190 1003-1026
  • [6] Malik M(2013)Controllability of fractional functional evolution equations of Sobolev Type via characteristic solution operators J. Optim. Theory Appl. 156 79-95
  • [7] Abbas S(2022)HJB equation for optimal control system with random impulses Optimization 209 1-17
  • [8] Dineshkumar C(2019)Nonlocal fractional evolution inclusions of order Mathematics 217 6981-6989
  • [9] Udhayakumar R(2011)Controllability of impulsive differential systems with nonlocal conditions Appl. Math. Comput. 28 1-23
  • [10] Vijayakumar V(2023)Optimal control results for impulsive fractional delay integrodifferential equations of order Nonlinear Anal. 13 781-786