Fourier transform and sigma model solitons on noncommutative tori

被引:0
|
作者
Hyun Ho Lee
机构
[1] University of Ulsan,Department of Mathematics
来源
Banach Journal of Mathematical Analysis | 2020年 / 14卷
关键词
Schrödinger representation; Fourier transform; Noncommutative tori; Heisenberg modules; Noncommutative solitons; 58B20; 35C08; 58B16; 58J05; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate how Fourier transform is involved in the analysis of a twisted group algebra L1(G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(G, \sigma )$$\end{document} for G=Γ^×Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G={\widehat{\Gamma }}\times \Gamma$$\end{document} and σ:G×G→T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :G\times G \rightarrow \mathbb {T}$$\end{document} 2-cocycle where Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} is a locally compact abelian group and Γ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{\Gamma }}$$\end{document} its Pontryagin dual related to noncommutative tori. We construct the dual Schrödinger representation which is unitarily equivalent to the Schrödinger representation, and thereby the dual bimodule of the Heisenberg bimodule with the application to noncommutative solitons in mind.
引用
收藏
页码:1728 / 1750
页数:22
相关论文
共 50 条
  • [41] The Gauss-Manin connection for the cyclic homology of smooth deformations, and noncommutative tori
    Yashinski, Allan
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (02) : 581 - 639
  • [42] Appendix to V. Mathai and J. Rosenberg's paper "A noncommutative sigma-model"
    Li, Hanfeng
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2011, 5 (02) : 295 - 298
  • [43] Explicitcontact force model for superellipses by Fourier transform and application to superellipse packing
    Arifuzzaman, S. M.
    Dong, Kejun
    Hou, Qinfu
    Zhu, Haiping
    Zeng, Qinghua
    POWDER TECHNOLOGY, 2020, 361 (361) : 112 - 123
  • [44] Holographic elements for Fourier transform
    Jagoszewski, E
    Andruchów, A
    OPTICA APPLICATA, 2004, 34 (01) : 63 - 75
  • [45] Fourier transform on integrable Boehmians
    Karunakaran, V.
    Ganesan, C.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (12) : 937 - 941
  • [46] Fourier Transform in Bounded Domains
    F. M. E. DUDDECK
    Meccanica, 1997, 32 : 197 - 204
  • [47] A generalization of BEM by Fourier transform
    Duddeck F.M.E.
    Geisenhofer M.
    Computational Mechanics, 2002, 28 (3) : 303 - 310
  • [48] Static Fourier transform lambdameter
    Apostol, Dan
    Sima, Adrian
    Logofatu, Petre C.
    Garoi, Florin
    Damian, Victor
    Nascov, Victor
    Iordache, Luliana
    ROMOPTO 2006: EIGHTH CONFERENCE ON OPTICS, 2007, 6785
  • [49] Palmprint identification by Fourier transform
    Li, WX
    Zhang, D
    Xu, ZQ
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2002, 16 (04) : 417 - 432
  • [50] A generalization of BEM by Fourier transform
    Duddeck, FME
    Geisenhofer, M
    COMPUTATIONAL MECHANICS, 2002, 28 (3-4) : 303 - 310