We investigate how Fourier transform is involved in the analysis of a twisted group algebra L1(G,σ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^1(G, \sigma )$$\end{document} for G=Γ^×Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G={\widehat{\Gamma }}\times \Gamma$$\end{document} and σ:G×G→T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma :G\times G \rightarrow \mathbb {T}$$\end{document} 2-cocycle where Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma$$\end{document} is a locally compact abelian group and Γ^\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widehat{\Gamma }}$$\end{document} its Pontryagin dual related to noncommutative tori. We construct the dual Schrödinger representation which is unitarily equivalent to the Schrödinger representation, and thereby the dual bimodule of the Heisenberg bimodule with the application to noncommutative solitons in mind.
机构:
St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, New York, NY 11439 USASt Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, New York, NY 11439 USA