Frobenius Quasigroups and Regular Polygons

被引:0
作者
Iden O. [1 ]
Strambach K. [2 ]
机构
[1] Department of Mathematics, University of Bergen, Johannes Brunsgate 12, Bergen
[2] Mathematisches Institut, Universität Erlangen, Bismarckstr. 1 1/2, Erlangen
关键词
algebraic and topological quasigroups; Frobenius groups; left distributive quasigroups;
D O I
10.1007/BF03323381
中图分类号
学科分类号
摘要
In terms of regular n-gons a left distributive quasigroup operation is defined on the complex plane. This operation can be expressed by means of a semidirect product G of the translation group (which is sharply transitive on the points of the plane and hence may be identified with the plane) by a finite cyclic group of rotations of order n. That observation makes possible a wide generalization of this geometric quasigroup construction. The connection in general between algebraic properties of the quasigroup and various properties of the group G is discussed, in particular it is studied what the consequences for the quasigroup Q are if G is interpreted as a topological group or an algebraic group. © 2004, Birkhäuser Verlag, Basel.
引用
收藏
页码:254 / 273
页数:19
相关论文
共 22 条
  • [1] Armacost D.L., The Structure of Locally Compact Abelian groups, (1981)
  • [2] Borel A., Linear algebraic groups, (1991)
  • [3] Borel A., Serre J.-P., Sur certaines sous-groupes des groupes de Lie compacts, 27, pp. 128-139
  • [4] Demazure M., Gabriel P., Groupes Algebriques, (1970)
  • [5] Enea M.R., Right distributive quasigroups, Geometriae Dedicata, 51, pp. 257-286, (1994)
  • [6] Enea M.R., Algebraic groups with a distinguished conjugacy class, Forum Math., 7, pp. 225-246, (1995)
  • [7] Freudenthal H., de Vries H., Linear Lie groups, Pure and Applied Mathematics, (1969)
  • [8] Fuchs L., Infinite Abelian groups, (1970)
  • [9] Fuchs L., Infinite Abelian groups, (1973)
  • [10] Hertzig, The structure of Frobenius algebraic groups, Am. J. Math., 83, pp. 421-431, (1961)