Sharp bounds for the difference between the arithmetic and geometric means

被引:0
|
作者
J. M. Aldaz
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源
Archiv der Mathematik | 2012年 / 99卷
关键词
26D15; Variance; Arithmetic-geometric inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We present sharp bounds for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{i=1}^n \alpha_i x_i -\prod_{i=1}^n x_i^{\alpha_i} }$$\end{document} in terms of the variance of the vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_1^{1/2},\dots,x_n^{1/2})}$$\end{document}.
引用
收藏
页码:393 / 399
页数:6
相关论文
共 50 条
  • [31] Concentration of the Ratio between the Geometric and Arithmetic Means
    Aldaz, J. M.
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (02) : 498 - 508
  • [32] COMPARISON OF DIFFERENCES BETWEEN ARITHMETIC AND GEOMETRIC MEANS
    Aldaz, J. M.
    TAMKANG JOURNAL OF MATHEMATICS, 2011, 42 (04): : 453 - 462
  • [33] Sharp bounds for the Sandor-Yang means in terms of arithmetic and contra-harmonic means
    Xu, Hui-Zuo
    Chu, Yu-Ming
    Qian, Wei-Mao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [34] Maps between positive cones of operator algebras preserving a measure of the difference between arithmetic and geometric means
    Marcell Gaál
    Positivity, 2019, 23 : 461 - 467
  • [35] Maps between positive cones of operator algebras preserving a measure of the difference between arithmetic and geometric means
    Gaal, Marcell
    POSITIVITY, 2019, 23 (02) : 461 - 467
  • [36] Optimal bounds for the first and second Seiffert means in terms of geometric, arithmetic and contraharmonic means
    Chu, Yu-Ming
    Qian, Wei-Mao
    Wu, Li-Min
    Zhang, Xiao-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [37] Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means
    Hui-Zuo Xu
    Yu-Ming Chu
    Wei-Mao Qian
    Journal of Inequalities and Applications, 2018
  • [38] Optimal bounds for the first and second Seiffert means in terms of geometric, arithmetic and contraharmonic means
    Yu-Ming Chu
    Wei-Mao Qian
    Li-Min Wu
    Xiao-Hui Zhang
    Journal of Inequalities and Applications, 2015
  • [39] OPTIMAL BOUNDS FOR THE SANDOR MEAN IN TERMS OF THE COMBINATION OF GEOMETRIC AND ARITHMETIC MEANS
    Qian, Wei-Mao
    Ma, Chun-Lin
    Xu, Hui-Zuo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 667 - 674
  • [40] OPTIMAL CONVEX COMBINATION BOUNDS OF SEIFFERT AND GEOMETRIC MEANS FOR THE ARITHMETIC MEAN
    Chu, Yu-Ming
    Zong, Cheng
    Wang, Gen-Di
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (03): : 429 - 434