Sharp bounds for the difference between the arithmetic and geometric means

被引:0
|
作者
J. M. Aldaz
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源
Archiv der Mathematik | 2012年 / 99卷
关键词
26D15; Variance; Arithmetic-geometric inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We present sharp bounds for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{i=1}^n \alpha_i x_i -\prod_{i=1}^n x_i^{\alpha_i} }$$\end{document} in terms of the variance of the vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_1^{1/2},\dots,x_n^{1/2})}$$\end{document}.
引用
收藏
页码:393 / 399
页数:6
相关论文
共 50 条
  • [21] Optimal Lehmer Mean Bounds for the Geometric and Arithmetic Combinations of Arithmetic and Seiffert Means
    Chu, Y. -M.
    Wang, M. -K.
    Qiu, Y. -F.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2012, 2 (01): : 3 - 9
  • [22] Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means
    Chu, Yu-Ming
    Qiu, Ye-Fang
    Wang, Miao-Kun
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [23] BOUNDS OF THE PERIMETER OF AN ELLIPSE USING ARITHMETIC, GEOMETRIC AND HARMONIC MEANS
    Wang, Miao-Kun
    Chu, Yu-Ming
    Jiang, Yue-Ping
    Qiu, Song-Liang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01): : 101 - 111
  • [24] Sharp Bounds for Toader Mean in terms of Arithmetic and Second Contraharmonic Means
    Qian, Wei-Mao
    Song, Ying-Qing
    Zhang, Xiao-Hui
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [25] Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means
    Li, Jun-Feng
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [26] Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means
    Jun-Feng Li
    Wei-Mao Qian
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2015
  • [27] Sharp Bounds by the Generalized Logarithmic Mean for the Geometric Weighted Mean of the Geometric and Harmonic Means
    Qian, Wei-Mao
    Long, Bo-Yong
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [28] Concentration of the Ratio between the Geometric and Arithmetic Means
    J. M. Aldaz
    Journal of Theoretical Probability, 2010, 23 : 498 - 508
  • [29] On a Proof of the Inequality Between the Arithmetic and Geometric Means
    Gencev, Marian
    AMERICAN MATHEMATICAL MONTHLY, 2018, 125 (07): : 650 - 652
  • [30] Relations of inequality between arithmetic and geometric means
    Petrovitch, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1916, 163 : 81 - 84