New Moore-Like Bounds and Some Optimal Families of Abelian Cayley Mixed Graphs

被引:0
作者
C. Dalfó
M. A. Fiol
N. López
机构
[1] Universitat de Lleida,Departament de Matemàtica
[2] Universitat Politècnica de Catalunya,Departament de Matemàtiques
[3] Barcelona Graduate School of Mathematics,Departament de Matemàtica
[4] Universitat de Lleida,undefined
来源
Annals of Combinatorics | 2020年 / 24卷
关键词
Mixed graph; Degree/diameter problem; Moore bound; Cayley graph; Abelian group; Congruences in ; 05C35; 05C25; 05C12; 90B10;
D O I
暂无
中图分类号
学科分类号
摘要
Mixed graphs can be seen as digraphs that have both arcs and edges (or digons, that is, two opposite arcs). In this paper, we consider the case where such graphs are Cayley graphs of abelian groups. Such groups can be constructed using a generalization to Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^n$$\end{document} of the concept of congruence in Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}. Here we use this approach to present some families of mixed graphs, which, for every fixed value of the degree, have an asymptotically large number of vertices as the diameter increases. In some cases, the results obtained are shown to be optimal.
引用
收藏
页码:405 / 424
页数:19
相关论文
共 47 条
[1]  
Buset D(2016)A revised Moore bound for partially directed graphs Discrete Math. 339 2066-2069
[2]  
El Amiri M(2018)On bipartite mixed graphs J. Graph Theory 89 386-394
[3]  
Erskine G(2004)The degree-diameter problem for several varieties of Cayley graphs I. The Abelian case SIAM J. Discrete Math. 17 478-519
[4]  
Miller M(1995)Large planar graphs with given diameter and maximum degree Discrete Appl. Math. 61 133-153
[5]  
Pérez-Rosés H(1987)Congruences in Discrete Math. 67 101-105
[6]  
Dalfó C(1995), finite Abelian groups and the Chinese remainder theorem Discrete Math. 141 123-134
[7]  
Fiol MA(1987)On congruence in IEEE Trans. Comput C–36 702-713
[8]  
López N(2016) and the dimension of a multidimensional circulant Electron. Notes Discrete Math. 54 145-150
[9]  
Dougherty R.(2017)A discrete optimizaton problem in local networks and data alignment Discrete Appl. Math. 231 190-197
[10]  
Faber V.(2009)A Moore-like bound for mixed Abelian Cayley graphs J. Graph Theory 64 87-98