Global existence of a coupled Euler-Bernoulli plate system with variable coefficients

被引:0
作者
Jianghao Hao
Yajing Zhang
机构
[1] Shanxi University,School of Mathematical Sciences
来源
Boundary Value Problems | / 2014卷
关键词
coupled plate system; variable coefficients; global existence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the initial boundary value problem of a coupled Euler-Bernoulli plate system with spatially varying coefficients of viscosity, damping and source term in a bounded domain. We prove that under some conditions on the initial value, the growth orders of the damping terms and the source terms the solution to the problem exists globally.
引用
收藏
相关论文
共 15 条
  • [1] Eden A(1993)Exponential attractors for extensible beam equation Nonlinearity 6 457-479
  • [2] Milani AJ(1998)Existence globale et stabilisation interne non linéaire d’un système de Petrovsky Bull. Belg. Math. Soc. Simon Stevin 5 583-594
  • [3] Guesmia A(1999)Energy decay for a damped nonlinear coupled system J. Math. Anal. Appl 239 38-48
  • [4] Guesmia A(2002)Analyticity of the nonlinear term forces convergence of the solutions to equations of continuum mechanics Nonlinear Anal 50 409-424
  • [5] Hoffmann KH(2009)Exponential stability of the plate equations with potential of second order and indefinite damping J. Math. Anal. Appl 359 62-75
  • [6] Rybka P(2002)Global existence and nonexistence in a system of Petrovsky J. Math. Anal. Appl 265 296-308
  • [7] Li J(2009)Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations J. Math. Anal. Appl 359 739-751
  • [8] Wu Y(1990)A direct method for the boundary stabilization of the wave equation J. Math. Pures Appl 69 33-55
  • [9] Messaoudi SA(2010)Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms Nonlinear Anal 72 2658-2683
  • [10] Xu R(undefined)undefined undefined undefined undefined-undefined