Problems with fitting to the power-law distribution

被引:0
作者
M. L. Goldstein
S. A. Morris
G. G. Yen
机构
[1] Oklahoma State University,School of Electrical and Computer Engineering
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2004年 / 41卷
关键词
Empirical Data; Maximum Likelihood Estimation; Likelihood Estimation; Complex Network; Reliable Estimation;
D O I
暂无
中图分类号
学科分类号
摘要
This short communication uses a simple experiment to show that fitting to a power law distribution by using graphical methods based on linear fit on the log-log scale is biased and inaccurate. It shows that using maximum likelihood estimation (MLE) is far more robust. Finally, it presents a new table for performing the Kolmogorov-Smirnov test for goodness-of-fit tailored to power-law distributions in which the power-law exponent is estimated using MLE. The techniques presented here will advance the application of complex network theory by allowing reliable estimation of power-law models from data and further allowing quantitative assessment of goodness-of-fit of proposed power-law models to empirical data.
引用
收藏
页码:255 / 258
页数:3
相关论文
共 17 条
[1]  
Albert undefined(1999)undefined Nature 401 130-undefined
[2]  
Jeong undefined(2000)undefined Nature 407 651-undefined
[3]  
Faloutsos undefined(1999)undefined Computer Commun. Rev. 29 251-undefined
[4]  
Redner undefined(1998)undefined Eur. Phys. J. B 4 131-undefined
[5]  
Liljeros undefined(2001)undefined Nature 411 907-undefined
[6]  
Guilleaume undefined(2004)undefined Information Processing Lett. 90 215-undefined
[7]  
Albert undefined(2002)undefined Rev. Mod. Phys. 74 47-undefined
[8]  
Newman undefined(2003)undefined SIAM Rev. 45 157-undefined
[9]  
Jones undefined(2003)undefined Proc. Royal Soc. London Series B-Biological Sciences 270 1123-undefined
[10]  
Park undefined(2003)undefined Phys. Rev. E 68 036122-undefined