Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs

被引:1
|
作者
Dinakar Gade
Simge Küçükyavuz
Suvrajeet Sen
机构
[1] The Ohio State University,Integrated Systems Engineering
来源
Mathematical Programming | 2014年 / 144卷
关键词
Two-stage stochastic integer programs; Gomory cuts; -shaped method; Benders’ decomposition; Lexicographic dual simplex; Finite convergence; 90C10; 90C15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of two-stage stochastic integer programs with binary variables in the first stage and general integer variables in the second stage. We develop decomposition algorithms akin to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-shaped or Benders’ methods by utilizing Gomory cuts to obtain iteratively tighter approximations of the second-stage integer programs. We show that the proposed methodology is flexible in that it allows several modes of implementation, all of which lead to finitely convergent algorithms. We illustrate our algorithms using examples from the literature. We report computational results using the stochastic server location problem instances which suggest that our decomposition-based approach scales better with increases in the number of scenarios than a state-of-the art solver which was used to solve the deterministic equivalent formulation.
引用
收藏
页码:39 / 64
页数:25
相关论文
共 50 条