Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials

被引:0
作者
Sylvie Corteel
Jim Haglund
Olya Mandelshtam
Sarah Mason
Lauren Williams
机构
[1] UC Berkeley,Department of Mathematics
[2] University of Pennsylvania,Department of Mathematics
[3] University of Waterloo,Department of Combinatorics and Optimization
[4] Wake Forest University,Department of Mathematics
[5] Harvard University,Department of Mathematics
来源
Selecta Mathematica | 2022年 / 28卷
关键词
05E05; 33D52;
D O I
暂无
中图分类号
学科分类号
摘要
We present several new and compact formulas for the modified and integral form of the Macdonald polynomials, building on the compact “multiline queue” formula for Macdonald polynomials due to Corteel, Mandelshtam, and Williams. We also introduce a new quasisymmetric analogue of Macdonald polynomials. These “quasisymmetric Macdonald polynomials" refine the (symmetric) Macdonald polynomials and specialize to the quasisymmetric Schur polynomials defined by Haglund, Luoto, Mason, and van Willigenburg.
引用
收藏
相关论文
共 30 条
[1]  
Cherednik I(1995)Nonsymmetric Macdonald polynomials Int. Math. Res. Notices 10 483-515
[2]  
Haglund J(2004)A combinatorial formula for Macdonald polynomials J. Am. Math. Soc. 18 735-761
[3]  
Haiman M(2008)A combinatorial formula for nonsymmetric Macdonald polynomials Am. J. Math. 130 359-383
[4]  
Loehr N(2015)Matrix product formula for Macdonald polynomials J. Phys. A 48 384001-490
[5]  
Haglund J(2011)Quasisymmetric Schur functions J. Combin. Theory Ser. A 118 463-1876
[6]  
Haiman M(2020)Modified Macdonald polynomials and integrability Commun. Math. Phys. 374 1809-852
[7]  
Loehr N(2013)Tableaux formulas for Macdonald polynomials Int. J. Algebra Comput. 23 833-194
[8]  
Cantini L(2019)Five-term relation and Macdonald polynomials J. Combin. Theory Ser. A 163 182-1006
[9]  
de Gier J(2001)Hilbert schemes, polygraphs and the Macdonald positivity conjecture J. Am. Math. Soc. 14 941-828
[10]  
Wheeler M(2012)A bijective proof of a factorization formula for specialized Macdonald polynomials Ann. Comb. 16 815-242