Stanley proved that for any centrally symmetric simplicial d-polytope P with d≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d\ge 3$$\end{document}, g2(P)≥d2-d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g_2(P) \ge {d \atopwithdelims ()2}-d$$\end{document}. We provide a characterization of centrally symmetric simplicial d-polytopes with d≥4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d\ge 4$$\end{document} that satisfy this inequality as equality. This gives a natural generalization of the classical Lower Bound Theorem for simplicial polytopes to the setting of centrally symmetric simplicial polytopes.
机构:
Univ Pau & Pays Adour, UMR CNRS 4152, Lab Math & Leurs Applicat, F-64000 Pau, FranceUniv Pau & Pays Adour, UMR CNRS 4152, Lab Math & Leurs Applicat, F-64000 Pau, France
机构:
Indian Stat Inst, Theoret Stat & Math Unit, Bangalore 560059, Karnataka, IndiaIndian Stat Inst, Theoret Stat & Math Unit, Bangalore 560059, Karnataka, India
Bagchi, Bhaskar
Datta, Basudeb
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, IndiaIndian Stat Inst, Theoret Stat & Math Unit, Bangalore 560059, Karnataka, India