Variable Exponent Herz Spaces

被引:0
作者
Stefan Samko
机构
[1] Universidade do Algarve,
来源
Mediterranean Journal of Mathematics | 2013年 / 10卷
关键词
Primary 46E30; Secondary 47B38; Function spaces; Herz spaces; Morrey spaces; variable exponent spaces; sublinear operators; maximal function; singular operators;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new type of variable exponent function spaces  Ḣp(·),q(·),α(·)(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}) and Hp(·),q(·),α(·)(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}) of Herz type, homogeneous and non-homogeneous versions, where all the three parameters are variable, and give comparison of continual and discrete approaches to their definition. Under the only assumption that the exponents p, q and α are subject to the log-decay condition at infinity, we prove that sublinear operators, satisfying the size condition known for singular integrals and bounded in Lp(·)(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}), are also bounded in the nonhomogeneous version of the introduced spaces, which includes the case maximal and Calderón-Zygmund singular operators.
引用
收藏
页码:2007 / 2025
页数:18
相关论文
共 20 条
  • [1] Almeida A.(2012)Maximal, potential and singular type operators on Herz spaces with variable exponents J. Math. Anal. Appl. 394 781-795
  • [2] Drihem D.(2003)The maximal function on variable Ann. Acad. Sci. Fenn. Math. 28 223-238
  • [3] Cruz-Uribe D.(1974)-spaces Proc. London Math. Soc. 29 538-556
  • [4] Fiorenza A.(1998)Some elementary inequalities for integrals with applications to Fourier transforms Trans. Amer. Math. Soc. 350 1249-1275
  • [5] Neugebauer C.J.(2013)Bilinear operators on Herz-type Hardy spaces J.Math. Anal. Appl. 401 72-84
  • [6] Flett T.M.(2010)Maximal, potential and singular operators in the local “complementary” variable exponent Morrey type spaces Math. Scand. 107 285-304
  • [7] Grafakos L.(1968)Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces J. Math. Mech. 18 283-323
  • [8] Li X.(2009)Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms Math. Sci. Res. J. 13 243-253
  • [9] Yang D.(1996)Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent Illinois J. Math. 40 484-501
  • [10] Guliev V.(2005)Boundedness of some sublinear operators on Herz spaces Integral Transfforms Spec. Funct. 16 5-6