Minimum sizes of identifying codes in graphs differing by one vertex

被引:0
作者
Irène Charon
Iiro Honkala
Olivier Hudry
Antoine Lobstein
机构
[1] Institut Télécom,Télécom ParisTech & CNRS
[2] University of Turku, LTCI UMR 5141
来源
Cryptography and Communications | 2013年 / 5卷
关键词
Graph theory; Twin-free graphs; Identifiable graphs; Identifying codes;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple, undirected graph with vertex set V. For v ∈ V and r ≥ 1, we denote by BG,r(v) the ball of radius r and centre v. A set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C} \subseteq V$\end{document} is said to be an r-identifying code in G if the sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{G,r}(v)\cap {\cal C}$\end{document}, v ∈ V, are all nonempty and distinct. A graph G admitting an r-identifying code is called r-twin-free, and in this case the size of a smallest r-identifying code in G is denoted by γr(G). We study the following structural problem: let G be an r-twin-free graph, and G* be a graph obtained from G by adding or deleting a vertex. If G* is still r-twin-free, we compare the behaviours of γr(G) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma_r(G^*)$\end{document}, establishing results on their possible differences and ratios.
引用
收藏
页码:119 / 136
页数:17
相关论文
共 40 条
[1]  
Bertrand N(2004)Identifying and locating-dominating codes on chains and cycles Eur. J. Comb. 25 969-987
[2]  
Charon I(2007)Structural properties of twin-free graphs Electron. J. Comb. 14 16-495
[3]  
Hudry O(2005)On the structure of identifiable graphs Electron. Notes Discrete Math. 22 491-366
[4]  
Lobstein A(2007)Extremal cardinalities for identifying and locating-dominating codes in graphs Discrete Math. 307 356-1547
[5]  
Charon I(2011)Identifying codes and locating-dominating sets on paths and cycles Discrete Appl. Math. 159 1540-638
[6]  
Honkala I(2011)Extremal graphs for the identifying code problem Eur. J. Combin. 32 628-227
[7]  
Hudry O(2008)Critical graphs with respect to vertex identification Util. Mathematica 76 213-434
[8]  
Lobstein A(2007)On graphs having a Discrete Math. 307 432-323
[9]  
Charon I(2004) ∖ { Ann. Comb. 8 303-165
[10]  
Hudry O(2006) } set as an identifying code Australasian Journal of Combinatorics 36 151-1095