We consider the following problem
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ \begin{array}{ll}-\Delta u = \mu |u|^\frac{4}{N-2}u + \frac{|u|^\frac{4-2s}{N-2}u}{|x|^{s}} + a(x)u, & x \in \Omega,\\ u=0, & {\rm on}\; \partial \Omega \end{array}\right.$$\end{document}where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${ \mu \ge 0, 0 < s < 2, 0 \in \partial \Omega}$$\end{document} and Ω is a bounded domain in RN. We prove that if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${N \ge 7, a(0) > 0}$$\end{document} and all the principle curvatures of ∂Ω at 0 are negative, then the above problem has infinitely many solutions.