A fast single-image super-resolution method implemented with CUDA

被引:0
|
作者
Yuan Yuan
Xiaomin Yang
Wei Wu
Hu Li
Yiguang Liu
Kai Liu
机构
[1] Sichuan University,College of Electronics and Information Engineering
[2] Sichuan University,College of Computer Science
[3] Sichuan University,College of Electrical and Engineering Information
来源
关键词
Super-resolution; Self-similarity; GPU; CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
Image super-resolution (SR) plays an important role in many areas as it promises to generate high-resolution (HR) images without upgrading image sensors. Many existing SR methods require a large external training set, which would consume a lot of memory. In addition, these methods are usually time-consuming when training model. Moreover, these methods need to retrain model once the magnification factor changes. To overcome these problems, we propose a method, which does not need an external training set by using self-similarity. Firstly, we rotate original low-resolution (LR) image with different angles to expand the training set. Second, multi-scale Difference of Gaussian filters are exploited to obtain multi-view feature maps. Multi-view feature maps could provide an accurate representation of images. Then, feature maps are divided into patches in parallel to build an internal training set. Finally, nonlocal means is applied to each LR patch from original LR image to infer HR patches. In order to accelerate the proposed method by exploiting the computation power of GPU, we implement the proposed method with compute unified device architecture (CUDA). Experimental results validate that the proposed method performs best among the compared methods in both terms of visual perception and objective quantitation. Moreover, the proposed method gets a remarkable speedup after implemented with CUDA.
引用
收藏
页码:81 / 97
页数:16
相关论文
共 50 条
  • [1] A fast single-image super-resolution method implemented with CUDA
    Yuan, Yuan
    Yang, Xiaomin
    Wu, Wei
    Li, Hu
    Liu, Yiguang
    Liu, Kai
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (01) : 81 - 97
  • [2] FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 640 - 644
  • [3] Single-Image Super-Resolution: A Survey
    Yao, Tingting
    Luo, Yu
    Chen, Yantong
    Yang, Dongqiao
    Zhao, Lei
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 119 - 125
  • [4] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [5] Fast On-Device Learning Framework for Single-Image Super-Resolution
    Lee, Seok Hee
    Park, Karam
    Cho, Sunwoo
    Lee, Hyun-Seung
    Choi, Kyuha
    Cho, Nam Ik
    IEEE ACCESS, 2024, 12 : 37276 - 37287
  • [6] FPPN: fast pixel purification network for single-image super-resolution
    Bin Meng
    Xiaomin Yang
    Rongzhu Zhang
    Kai Liu
    Multimedia Systems, 2022, 28 (1) : 281 - 293
  • [7] FPPN: fast pixel purification network for single-image super-resolution
    Meng, Bin
    Yang, Xiaomin
    Zhang, Rongzhu
    Liu, Kai
    MULTIMEDIA SYSTEMS, 2022, 28 (01) : 281 - 293
  • [8] The single-image super-resolution method based on the optimization of neural networks
    Duanmu, Chunjiang
    Lei, Yi
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [9] Improving Inverse Distance Weighting Method for Single-Image Super-Resolution
    Cumpim, Chaipichit
    Punchalard, Rachu
    Janchitrapongvej, Kanok
    Kimpan, Chom
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [10] Fast Single-Image Super-Resolution via Deep Network With Component Learning
    Xie, Chao
    Zeng, Weili
    Lu, Xiaobo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (12) : 3473 - 3486