A comparative analysis of the adiabatic stability of anisotropic spherically symmetric solutions in general relativity

被引:0
作者
M. Esculpi
M. Malaver
E. Aloma
机构
[1] Universidad Central de Venezuela,Departamento de Física Aplicada, Facultad de Ingeniería
[2] Universidad Marítima del Caribe,Coordinación de Ciencias Aplicadas
[3] Universidad Simón Bolivar,Departamento de Formación General y Ciencias Básicas
来源
General Relativity and Gravitation | 2007年 / 39卷
关键词
Anisotropic fluid; Energy conditions; Adiabatic contraction; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
A family of static solutions of the Einstein field equations with spherical symmetry for a locally anisotropic fluid with homogeneous energy density is obtained. These solutions depend on two adjustable parameters related to degree of anisotropy of the fluid. Some known solutions may be recovered for specific values of these parameters. As a difference to other known solutions it is possible to change the grade of anisotropy of the model, keeping the same functional dependence on the coordinates. By means of a slow adiabatic contraction, the stability of the obtained solutions is studied. Also, it is shown, how it is possible to enhance the stability of the models by adjusting the parameters, and to obtain more compact configurations than those obtained with other similar anisotropic solutions, while the dominant or strong energy condition holds within the sphere.
引用
收藏
页码:633 / 652
页数:19
相关论文
共 45 条
  • [1] Lemaitre G.(1933)Anisotropic spheres in general relativity Ann. Soc. Sci. Bruxelles A 53 51-665
  • [2] Florides P.S.(1974)undefined Proc. R. Soc. Lond. A 337 529-undefined
  • [3] Bowers R.L.(1974)undefined Astrophys. J. 188 657-undefined
  • [4] Liang E.P.T.(1980)undefined Phys. Rey. D 22 807-undefined
  • [5] Letelier P.(1981)undefined J. Math. Phys. 22 118-undefined
  • [6] Cosenza M.(1982)undefined Phys. Rey. D 26 1262-undefined
  • [7] Herrera L.(1984)undefined J. Phys. 62 239-undefined
  • [8] Esculpi M.(1992)undefined Mon. Not. R. Astron. Soc. 259 365-undefined
  • [9] Witten L.(1987)undefined J. Math. Phys. 28 1114-undefined
  • [10] Bayin S.(1992)undefined Phys. Lett. A 165 206-undefined