Physical dynamic double-network hydrogels as dressings to facilitate tissue repair

被引:0
|
作者
Baolin Guo
Yongping Liang
Ruonan Dong
机构
[1] Xi’an Jiaotong University,State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology
[2] Xi’an Jiaotong University,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology
[3] The First Affiliated Hospital of Xi’an Jiaotong University,Department of Orthopaedics
来源
Nature Protocols | 2023年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Double-network hydrogels can be tuned to have high mechanical strength, stability, elasticity and bioresponsive properties, which can be combined to create self-healing, adhesive and antibacterial wound dressings. Compared with single-network hydrogel, double-network hydrogel shows stronger mechanical properties and better stability. In comparison with chemical bonds, the cross-linking in double networks makes them more flexible than single-network hydrogels and capable of self-healing following mechanical damage. Here, we present the stepwise synthesis of physical double-network hydrogels where hydrogen bonds and coordination reactions provide self-healing, pH-responsive, tissue-adhesive, antioxidant, photothermal and antibacterial properties, and can be removed on demand. We then explain how to carry out physical, chemical and biological characterizations of the hydrogels for use as wound dressings, yet the double-network hydrogels could also be used in different applications such as tissue engineering scaffolds, cell/drug delivery systems, hemostatic agents or in flexible wearable devices for monitoring physiological and pathological parameters. We also outline how to use the double-network hydrogels in vivo as wound dressings or hemostatic agents. The synthesis of the ureido–pyrimidinone-modified gelatin, catechol-modified polymers and the hydrogels requires 84 h, 48 h and 1 h, respectively, whereas the in vivo assays require 3.5 weeks. The procedure is suitable for users with expertise in biomedical polymer materials.
引用
收藏
页码:3322 / 3354
页数:32
相关论文
共 50 条
  • [21] A Deformation Mechanism for Double-Network Hydrogels with Enhanced Toughness
    Nakajima, Tasuku
    Furukawa, Hidemitsu
    Gong, Jian Ping
    Lin, Eric K.
    Wu, Wen-li
    POLYMER NETWORKS: SYNTHESIS, PROPERTIES, THEORY AND APPLICATIONS, 2010, 291-292 : 122 - +
  • [22] Joint double-network hydrogels with excellent mechanical performance
    Zhang, Meng
    Ren, Xiuyan
    Duan, Lijie
    Gao, Guanghui
    POLYMER, 2018, 153 : 607 - 615
  • [23] Reinforcement Effects of Inorganic Nanoparticles for Double-Network Hydrogels
    Zhai, Yunge
    Duan, Hongdong
    Meng, Xia
    Cai, Kun
    Liu, Yu
    Lucia, Lucian
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2015, 300 (12) : 1290 - 1299
  • [24] Double-network hydrogels with extremely high mechanical strength
    Gong, JP
    Katsuyama, Y
    Kurokawa, T
    Osada, Y
    ADVANCED MATERIALS, 2003, 15 (14) : 1155 - +
  • [25] Hybrid double-network hydrogels with excellent mechanical properties
    Li, Ting
    Zhang, Xuhui
    Xia, Bihua
    Ma, Piming
    Chen, Mingqing
    Du, Mingliang
    Wang, Yang
    Dong, Weifu
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (38) : 16569 - 16576
  • [26] Effect of Predamage on the Fracture Energy of Double-Network Hydrogels
    Zheng, Yong
    Wang, Yiru
    Nakajima, Tasuku
    Gong, Jian Ping
    ACS MACRO LETTERS, 2024, 13 (02) : 130 - 137
  • [27] Injectable double-network hydrogel for corneal repair
    Wang, Lei
    Li, Afeng
    Zhang, Dan
    Zhang, Min
    Ma, Liyuan
    Li, Yao
    Wang, Wenwen
    Nan, Kaihui
    Chen, Hao
    Li, Lingli
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [28] Development of the network alteration theory for the Mullins softening of double-network hydrogels
    Zhu, Pingping
    Zhong, Zheng
    MECHANICS OF MATERIALS, 2021, 152
  • [29] Multiple Physical Bonds to Realize Highly Tough and Self-Adhesive Double-Network Hydrogels
    Zhang, Dong
    Yang, Fengyu
    He, Jian
    Xu, Lijian
    Wang, Ting
    Feng, Zhang-Qi
    Chang, Yung
    Gong, Xiong
    Zhang, Ge
    Zheng, Jie
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (03) : 1031 - 1042
  • [30] Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels
    Xu, Xiaowen
    Jerca, Valentin Victor
    Hoogenboom, Richard
    MATERIALS HORIZONS, 2021, 8 (04) : 1173 - 1188