共 29 条
- [21] G-codes, self-dual G-codes and reversible G-codes over the ring Bj,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{B}}_{j,k}$\end{document} Cryptography and Communications, 2021, 13 (5) : 601 - 616
- [22] Self-dual skew-codes of odd lengths over Z4+uZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4+u\mathbb {Z}_4$$\end{document} Cryptography and Communications, 2025, 17 (2) : 511 - 523
- [23] Self-dual constacyclic codes of length 2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^s$$\end{document} over the ring F2m[u,v]/⟨u2,v2,uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^m}[u,v]/\langle u^2, v^2, uv-vu \rangle $$\end{document} Journal of Applied Mathematics and Computing, 2022, 68 (1) : 431 - 459
- [24] Mass formula for self-dual codes over Fq+uFq+u2Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mathbb {F}}_q+u\varvec{\mathbb {F}}_q+u^2\varvec{\mathbb {F}}_q$$\end{document} Journal of Applied Mathematics and Computing, 2018, 57 : 523 - 546
- [25] Cyclic codes over the ring F2+uF2+vF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2+uF_2+vF_2$$\end{document} Computational and Applied Mathematics, 2018, 37 (3) : 2489 - 2502
- [26] Few-weight ZpZp[u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pmb {{\mathbb {Z}}}}_p\pmb {{\mathbb {Z}}}_p[u]$$\end{document}-additive codes from down-sets Journal of Applied Mathematics and Computing, 2022, 68 (4) : 2381 - 2388
- [27] Some results on quasi-twisted codes over F2[u]/uk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2[u]/\left( u^{k+1}\right) $$\end{document} Journal of Applied Mathematics and Computing, 2016, 50 (1-2) : 483 - 491
- [28] Self-dual and LCD double circulant and double negacirculant codes over a family of finite rings Fq[v1,v2,…,vt]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb {F}_{q}[v_{1}, v_{2},\dots ,v_{t}]$\end{document} Cryptography and Communications, 2023, 15 (3) : 529 - 551
- [29] Linear codes over F3+uF3+u2F3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbbm {F}}_3+u\mathbbm {F}_3+u^2\mathbbm {F}_3$$\end{document}: MacWilliams identities, optimal ternary codes from one-Lee weight codes and two-Lee weight codes Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 527 - 544