Dynamic analysis of a biocontrol of sea lice by age-structured model

被引:0
作者
Isam Al-Darabsah
Yuan Yuan
机构
[1] Memorial University of Newfoundland,Department of Mathematics and Statistics
[2] University of Waterloo,Department of Applied Mathematics
来源
Nonlinear Dynamics | 2019年 / 97卷
关键词
Stage structure; Predator–prey interaction; Persistence; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the responsibility for many illnesses on farmed salmon and inflicting huge financial losses, sea lice treatment has become one of the highest priorities in aquaculture studies. From the viewpoint of dynamics, we consider three stages in sea louse life cycle and study the predator–prey interaction between cleaner fish and sea lice. Through mathematical analysis, we provide two important indexes: the adult reproduction number Rs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_s$$\end{document} for sea lice and the net reproductive number of cleaner fish Rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_f$$\end{document}, which address the global dynamics relating to Rs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_s$$\end{document} and Rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_f$$\end{document} theoretically, including the global/local stability of the equilibria, uniformly persistence and possible Hopf bifurcation. Numerical simulation is provided to show the oscillation behavior in the system.
引用
收藏
页码:1649 / 1666
页数:17
相关论文
共 50 条
[41]   Stability analysis of an age-structured epidemic model with vaccination and standard incidence rate [J].
Huang, Jicai ;
Kang, Hao ;
Lu, Min ;
Ruan, Shigui ;
Zhuo, Wenting .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 66
[42]   Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence [J].
Liu, Zijian ;
Chen, Jing ;
Pang, Jianhua ;
Bi, Ping ;
Ruan, Shigui .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) :1763-1791
[43]   ANALYSIS OF AN SIRS AGE-STRUCTURED EPIDEMIC MODEL WITH VACCINATION AND VERTICAL TRANSMISSION OF DISEASE [J].
El-Doma, Mohammed .
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2006, 1 (01) :36-60
[44]   Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence [J].
Zijian Liu ;
Jing Chen ;
Jianhua Pang ;
Ping Bi ;
Shigui Ruan .
Journal of Nonlinear Science, 2018, 28 :1763-1791
[45]   Dynamical analysis and optimal control simulation for an age-structured cholera transmission model [J].
Yang, Junyuan ;
Modnak, Chairat ;
Wang, Jin .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (15) :8438-8467
[46]   Stability Analysis for an SIR Age-Structured Epidemic Model with Vertical Transmission and Vaccination [J].
El-Doma, M. .
INTERNATIONAL JOURNAL OF ECOLOGY & DEVELOPMENT, 2005, 3 (01) :1-38
[47]   Stability Analysis of an Age-Structured SIR Epidemic Model with a Reduction Method to ODEs [J].
Kuniya, Toshikazu .
MATHEMATICS, 2018, 6 (09)
[48]   Monotone approximation for a hierarchical age-structured population model [J].
Ackleh, AS ;
Deng, K .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2005, 12 (02) :203-214
[49]   Numerical analysis of linearly implicit Euler method for age-structured SIS model [J].
Zhijie Chen ;
Zhanwen Yang ;
Daili Sheng .
Journal of Applied Mathematics and Computing, 2024, 70 :969-996
[50]   HOPF BIFURCATION OF AN AGE-STRUCTURED VIRUS INFECTION MODEL [J].
Mohebbi, Hossein ;
Aminataei, Azim ;
Browne, Cameron J. ;
Razvan, Mohammad Reza .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (02) :861-885