共 33 条
Converting rice husk to biochar reduces bamboo soil N2O emissions under different forms and rates of nitrogen additions
被引:0
|作者:
Rong Zhou
Ali El-Naggar
Yongfu Li
Yanjiang Cai
Scott X. Chang
机构:
[1] Zhejiang A&F University,State Key Laboratory of Subtropical Silviculture
[2] Zhejiang A&F University,Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration
[3] University of Alberta,Department of Renewable Resources
来源:
Environmental Science and Pollution Research
|
2021年
/
28卷
关键词:
Exogenous carbon;
Greenhouse gas;
Lei bamboo forest;
Nitrogen form;
Nitrogen rate;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The effects of biochar application combined with different forms and rates of inorganic nitrogen (N) addition on nitrous oxide (N2O) emissions from forest soils have not been well documented. A microcosm experiment was conducted to study the effects of rice husk and its biochar in combination with the addition of N fertilizers in different forms (ammonium [NH4+] and nitrate [NO3−]) and rates (equivalent to 150 and 300 kg N ha−1 yr−1) on N2O emissions from Lei bamboo (Phyllostachys praecox) soils. The application of rice husk significantly increased cumulative N2O emissions under the addition of both NO3−-N and NH4+-N. Biochar significantly reduced cumulative N2O emissions by 15.2 and 5.8 μg N kg−1 when co-applied with the low and high rates of NO3−–N, respectively, compared with the respective NO3−-N addition rate without biochar. There was no significant difference in soil N2O emissions between the two NH4+-N addition rates, and cumulative N2O emission decreased with increasing soil NH4+-N concentration, mainly due to the toxic effect caused by the excessive NH4+-N on soil N2O production from the nitrification process. Cumulative N2O emissions recorded 18.74 and 14.04 μg N kg−1 under low and high rates of NO3−-N addition, respectively, which were higher than those produced by NH4+-N addition. Our study demonstrated that the conversion of rice husk to biochar could reduce N2O emissions under the addition of different N forms and rates. Moreover, rice husk or its biochar in combination with NH4+-N fertilizer produced less N2O in Lei bamboo soil, compared with NO3−-N fertilizer.
引用
收藏
页码:28777 / 28788
页数:11
相关论文