Nonlinear perturbations of a periodic elliptic problem with discontinuous nonlinearity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document}

被引:0
作者
Claudianor O. Alves
Rúbia G. Nascimento
机构
[1] Universidade Federal de Campina Grande,Unidade Acadêmica de Matemática e Estatística
[2] Universidade Federal do Pará,Faculdade de Matemática
关键词
35A15; 35J25; 34A36; Elliptic problem; Discontinuous nonlinearity; Variational methods;
D O I
10.1007/s00033-011-0153-0
中图分类号
学科分类号
摘要
Using variational methods, we establish existence of positive solutions for a class of elliptic problems like \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta{u}+V(x)u=H(u-\beta)f(u)\,\,\,\, {\rm in}\,\,\,\mathbb{R}^{N},$$\end{document}where β > 0, V is a positive, continuous perturbations of a periodic function, H is the Heaviside function and f is a continuous function with subcritical growth.
引用
收藏
页码:107 / 124
页数:17
相关论文
共 39 条
[1]  
Alves C.O.(2002)A variational approach to discontinuous problems with critical Sobolev exponents J. Math. Anal. App. 265 103-127
[2]  
Bertone A.M.(2001)Nonlinear perturbations of a periodic elliptic problem with critical growth J. Math. Anal. App. 260 133-146
[3]  
Gonçalves J.V.(2003)A discontinuous problem involving the p-Laplacian operator and critical exponent in Eletr. J. Differ. Equ. 2003 1-10
[4]  
Alves C.O.(1989)The dual variational principle and elliptic problems with discontinuous nonlinearities J. Math. Anal. Appl. 140 363-373
[5]  
Carrião P.C.(1993)Critical exponent and discontinuous nonlinearities Differ. Integral Equ. 6 1173-1185
[6]  
Miyagaki O.H.(1993)Some remarks on elliptic problems with discontinuous nonlinearities Rend. Sem. Mat. Univ. Politec. Torino 51 331-342
[7]  
Alves C.O.(1983)A relation between pointwise convergence of functions and convergence functionals Proc. Am. Math. Soc. 8 486-490
[8]  
Bertone A.M.(1981)Variational methods for nondifferentiable functionals and their applications to partial differential equations J. Math. Anal. 80 102-129
[9]  
Ambrosetti A.(1978)On the multiple solutions of the elliptic differential equations with discontinuous nonlinear terms Sci. Sin. 21 139-158
[10]  
Badiale M.(1980)The obstacle problem and partial differential equations with discontinuous nonlinearities Commun. Pure Appl. Math. 33 117-146