High Quality Electret Based Triboelectric Nanogenerator for Boosted and Reliable Electrical Output Performance

被引:0
|
作者
Yeongcheol Yun
Moonwoo La
Sumin Cho
Sunmin Jang
Jun Hyuk Choi
Yoonsang Ra
Dongik Kam
Sung Jea Park
Dongwhi Choi
机构
[1] Kyung Hee University,Department of Mechanical Engineering
[2] Korea University of Technology and Education (KOREATECH),School of Mechanical Engineering
来源
International Journal of Precision Engineering and Manufacturing-Green Technology | 2021年 / 8卷
关键词
Triboelectric nanogenerator; Electret; Energy harvesting; Corona charging;
D O I
暂无
中图分类号
学科分类号
摘要
The triboelectric nanogenerator (TENG) is in the spotlight due to its advantages of material and processing diversity. Despite these advantages, for its practical utilization, the output performance of the TENG still needs to be enhanced. Unlike most of the previous approach to increase triboelectricity between two contact surfaces, in this paper, the output performance is significantly enhanced by improving the electrical charge induction through employment of a stably pre-charged electret. The main advantages of the proposed strategy is stable long term output enhancement of the TENG. For the first time, the eminent concept of “quality of electrical charges” on the electret is proposed as the degree of helpfulness of the electrical charges to enhance the electrical output performance of the TENG. In this regard, a procedure to develop the electret with high quality electrical charges in deep traps, which determines long-term performance of the TENG, is systematically investigated to maximize the amount of electrical charges and simultaneously minimize their escape to the external environment. In consequence, unlike existing studies only focusing on immediate enhancement of electrical output performance of the TENG with electret, this study provides the strategy to stably enhance the output performance for a long time. This strategy becomes dominant especially with weak contact force generating small oscillation without strong contact between two materials. Thus, using the developed electret, enhanced and reliable performance of the energy harvester is further demonstrated as a proof of niche application to effectively harvest energy from weak vibration of an automobile engine.
引用
收藏
页码:125 / 137
页数:12
相关论文
共 50 条
  • [41] High output power density owing to enhanced charge transfer in ZnO-based triboelectric nanogenerator
    Ajimsha, R. S.
    Mahapatra, Abhinav
    Das, A. K.
    Sahu, V. K.
    Misra, P.
    ENERGY, 2023, 263
  • [42] A high-performance transparent and flexible triboelectric nanogenerator based on hydrophobic composite films
    Li, Gui-Zhong
    Wang, Gui-Gen
    Cai, Ya-Wei
    Sun, Na
    Li, Fei
    Zhou, Hai-Ling
    Zhao, Hai-Xu
    Zhang, Xiao-Nan
    Han, Jie-Cai
    Yang, Ya
    NANO ENERGY, 2020, 75
  • [43] Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting
    Li, Zhaoling
    Zhu, Miaomiao
    Qiu, Qian
    Yu, Jianyong
    Ding, Bin
    NANO ENERGY, 2018, 53 : 726 - 733
  • [44] Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization
    Vatankhah, Elham
    Tadayon, Mahdi
    Ramakrishna, Seeram
    CARBOHYDRATE POLYMERS, 2021, 266
  • [45] A High Performance Triboelectric Nanogenerator Based on MXene/Graphene Oxide Electrode for Glucose Detection
    Yang, Wei
    Cai, Xu
    Guo, Shujun
    Wen, Long
    Sun, Zhaoyang
    Shang, Ruzhi
    Shi, Xin
    Wang, Jun
    Chen, Huamin
    Li, Zhou
    MATERIALS, 2023, 16 (02)
  • [46] High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers
    Kinas, Zeynep
    Karabiber, Abdulkerim
    Yar, Adem
    Ozen, Abdurrahman
    Ozel, Faruk
    Ersoz, Mustafa
    Okbaz, Abdulkerim
    ENERGY, 2022, 239
  • [47] Low-cost high performance sustainable triboelectric nanogenerator based on laboratory waste
    Panda, Archana
    Das, Kunal Kumar
    Kaja, Kushal Ruthvik
    Gandi, Venkataramana
    Mohanty, Sunit Gourav
    Panigrahi, Basanta Kumar
    JOURNAL OF METALS MATERIALS AND MINERALS, 2025, 35 (01):
  • [48] Investigation on the adhesive contact and electrical performance for triboelectric nanogenerator considering polymer viscoelasticity
    Wang, Chenfei
    Wang, Xiaoli
    Hu, Yanqiang
    Li, Lizhou
    Li, Zhihao
    Wu, Heng
    Zhao, Zirui
    NANO RESEARCH, 2021, 14 (12) : 4625 - 4633
  • [49] Enhanced performance of an expanded polytetrafluoroethylene-based triboelectric nanogenerator for energy harvesting
    Zhang, Zhi
    Xu, Yiyang
    Wang, Dongfang
    Yang, Huaguang
    Guo, Jiansheng
    Turng, Lih-Sheng
    NANO ENERGY, 2019, 60 : 903 - 911
  • [50] Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn
    Ma L.
    Wu R.
    Liu S.
    Zhang Y.
    Wang J.
    Fangzhi Xuebao/Journal of Textile Research, 2021, 42 (01): : 53 - 58