New constructions of self-dual codes via twisted generalized Reed-Solomon codes

被引:0
作者
Junzhen Sui
Qin Yue
Fuqing Sun
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Computer Science and Technology
[2] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[3] State Key Laboratory of Cryptology,undefined
来源
Cryptography and Communications | 2023年 / 15卷
关键词
Constructions; MDS codes; Self-dual codes; Twisted generalized Reed-Solomon codes; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a sufficient and necessary condition that a twisted Reed-Solomon (TRS) code is MDS. Then we give a sufficient and necessary condition that a twisted generalized Reed-Solomon (TGRS) code is self-dual. Moreover, we present some new explicit constructions of self-dual TGRS codes. These self-dual TGRS codes are MDS, Near-MDS, or 2-MDS and most of them are non-GRS.
引用
收藏
页码:959 / 978
页数:19
相关论文
共 36 条
  • [1] Lavauzelle J(2020)Cryptanalysis of a system based on twisted Reed-Solomon codes Des. Codes Crypt. 88 1285-1300
  • [2] Renner J(2021)Twisted Reed-Solomon codes with one-dimensional hull IEEE Commun. Lett. 25 383-386
  • [3] Wu Y(2021)New LCD MDS codes of non-Reed-Solomon type IEEE Trans. Inf. Theory 67 5069-5078
  • [4] Wu Y(2021)Construction of MDS twisted Reed-Solomon codes and LCD MDS codes Des. Codes Crypt. 89 2051-2065
  • [5] Hyun JY(2021)MDS or NMDS self-dual codes from twisted generalized Reed-Solomon codes Des. Codes Crypt. 89 2195-2209
  • [6] Lee Y(2022)A class of twisted generalized Reed-Solomon codes Des. Codes Crypt. 90 1649-1658
  • [7] Liu H(2022)MDS and near-MDS codes via twisted Reed-Solomon codes Des. Codes Crypt. 90 1937-1958
  • [8] Liu S(2022)Twisted Reed-Solomon codes IEEE Trans. Inf. Theory 68 3047-3061
  • [9] Huang D(2022)MDS, near-MDS or 2-MDS self-dual codes via twisted generalized Reed-Solomon codes IEEE Trans. Inf. Theory 68 7832-7841
  • [10] Yue Q(2023)MDS or NMDS LCD codes from twisted Reed-Solomon codes Crypt. Commun. 15 221-237