Convexity of Bertrand oligopoly TU-games with differentiated products

被引:1
|
作者
Aymeric Lardon
机构
[1] Université Côte d’Azur,CNRS, GREDEG
来源
Annals of Operations Research | 2020年 / 287卷
关键词
Bertrand competition; Cooperation; Core; Convexity; C71; D43;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Bertrand oligopoly TU-games with differentiated products. We assume that the demand system is Shubik’s and that firms operate at a constant and identical marginal and average cost. Our main results state that Bertrand oligopoly TU-games in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-characteristic function form satisfy the convexity property, meaning that there exist strong incentives for large-scale cooperation between firms on prices.
引用
收藏
页码:285 / 302
页数:17
相关论文
共 24 条
  • [1] Convexity of Bertrand oligopoly TU-games with differentiated products
    Lardon, Aymeric
    ANNALS OF OPERATIONS RESEARCH, 2020, 287 (01) : 285 - 302
  • [2] Convexity and the Shapley value of Bertrand oligopoly TU-games in β-characteristic function form
    Hou, Dongshuang
    Lardon, Aymeric
    Driessen, Theo
    THEORY AND DECISION, 2025,
  • [3] The Core in Bertrand Oligopoly TU-Games with Transferable Technologies
    Lardon, Aymeric
    B E JOURNAL OF THEORETICAL ECONOMICS, 2020, 20 (01):
  • [4] The γ-core in Cournot oligopoly TU-games with capacity constraints
    Aymeric Lardon
    Theory and Decision, 2012, 72 : 387 - 411
  • [5] The γ-core in Cournot oligopoly TU-games with capacity constraints
    Lardon, Aymeric
    THEORY AND DECISION, 2012, 72 (03) : 387 - 411
  • [6] A Formal Theory of Cooperative TU-Games
    Daumas, Marc
    Martin-Dorel, Erik
    Truffert, Annick
    Venton, Michel
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5861 : 81 - +
  • [7] Hierarchical constrained egalitarianism in TU-games
    Koster, M
    MATHEMATICAL SOCIAL SCIENCES, 2002, 43 (02) : 251 - 265
  • [8] Set-valued TU-games
    Fernández, FR
    Hinojosa, MA
    Puerto, J
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 159 (01) : 181 - 195
  • [9] The B-nucleolus of TU-games
    Reijnierse, H
    Potters, J
    GAMES AND ECONOMIC BEHAVIOR, 1998, 24 (1-2) : 77 - 96
  • [10] Sequentially compatible payoffs and the core in TU-games
    Izquierdo, JM
    Llerena, F
    Rafels, C
    MATHEMATICAL SOCIAL SCIENCES, 2005, 50 (03) : 318 - 330