Nilpotent groups of class two which underly a unique regular dessin

被引:0
作者
Kan Hu
Roman Nedela
Na-Er Wang
机构
[1] Zhejiang Ocean University,School of Mathematics, Physics and Information Science
[2] Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province,Faculty of Natural Sciences
[3] Matej Bel University,Institute of Mathematics and Computer Science
[4] Slovak Academy of Sciences,undefined
来源
Geometriae Dedicata | 2015年 / 179卷
关键词
Regular dessin; Nilpotent group; Dessin operation ; External symmetry; Primary 14H57; Secondary 14H37; 20B25; 30F10;
D O I
暂无
中图分类号
学科分类号
摘要
A dessin is an embedding of connected bipartite graph into an oriented closed surface. A dessin is regular if its group of colour- and orientation-preserving automorphisms acts transitively on the edges. In the present paper regular dessins with a nilpotent automorphism group are investigated, and attention are paid on those with the highest level of external symmetry. Depending on the algebraic theory of dessins and using group-theoretical methods, we present a classification of nilpotent groups of class two which underly a unique regular dessin.
引用
收藏
页码:177 / 186
页数:9
相关论文
共 25 条
[1]  
Belyǐ GV(1979)Galois extensions of a maximal cyclotomic field Izv. Akad. Nauk. SSSR Ser. Mat. 43 267-276
[2]  
Breda d’Azevedo A(2001)Join and intersection of hypermaps Acta. Univ. M. Belii. 9 13-28
[3]  
Nedela R(2013)Galois actions and regular dessins of small genera Rev. Mat. Iberoam. 29 163-181
[4]  
Conder MDE(1988)Regular hypermaps Eur. J. Comb. 9 337-351
[5]  
Jones GA(2009)Generalised Fermat hypermaps and Galois orbits Glasgow Math. J. 51 289-299
[6]  
Streit M(2013)The bipartite graphs of abelian dessins d’enfants Ars Math. Contemp. 6 301-304
[7]  
Wolfart J(1988)Operations on hypermaps, and outer automorphisms Eur. J. Comb. 9 551-560
[8]  
Corn D(2010)Regular embeddings of complete bipartite graphs: classification and enumeration Proc. Lond. Math. Soc. 101 427-453
[9]  
Singerman D(2010)Hypermap operations of finite order Discrete Math. 310 1820-1827
[10]  
Coste AD(2007)Galois action on families of generalised Fermat curves J. Algebra 307 829-840